
SortalGI API for Rhino
User Manual

 
Manual	update	19	August	2018 
Wri6en	by	Bianchi	Dy	and	Rudi	Stouffs 

Table of Contents

About	the	SortalGI	API	 4	..

SortalGI	InstallaFon	and	Setup	for	Rhinoceros	 6	..

1.	Installing	the	SortalGI	library	 6	...

2.	Linking	the	SortalGI	library	to	Rhinoceros	 6	...

3.	SeLng	up	the	SortalGI	library	in	Rhinoceros	 7	..

4.	ImporFng	future	for	Python	3.5	to	Python	2.7	compaFbility	 8	...

API	 9	...

Import	notaFon	 9	...

Summary	of	all	methods	 10	...

apply_all_together	 12	..

apply_flow	 14	..

check_precision	 14	..

convert_shape	 15	..

convert_sort	 16	...

create_flow	 17	...

create_rule	 18	...

create_shape	 19	..

default_precision	 20	..

draw_rule	 21	..

draw_shape	 22	..

extract_shape		 22	..

find_rule_appns	 23	..

get_rule_lhs	 24	..

get_rule_rhs	 25	...

get_rule_descripFon	 26	..

maximalize	 26	..

move	 27	...

overwrite_sdl	 28	..

part_of	 29	..

read_sdl	 30	..

redraw	 31	...

save_sdl	 31	..

set_flow_descripFon	 32	..

set_flow_name	 33	...

set_precision	 33	...

set_rule_descripFon	 34	...

set_rule_name	 34	..

set_shape_name	 35	..

Rhino	Methods	 36	..

Import	notaFon	 36	...

Summary	of	all	methods	 37	...

add_bound_line	 39	..

add_color	 39	..

add_descripFon	 40	..

add_distance	 41	..

add_embeds	 41	...

add_enum	 42	...

add_label	 43	..

add_longest_line	 43	..

add_max_line	 44	...

add_no_label	 44	..

add_normal	 45	..

add_point_on_line	 46	...

add_shortest_line	 47	...

add_void	 47	...

add_weight	 48	...

analysis	 49	...

clear_shape	 49	...

delete_descripFon	 50	..

delete_label	 51	..

delete_pred_dir	 51	..

delete_tag	 52	...

clear_everything	 53	...

tag	 53	...

� 	2

FAQ	 55	..

Annex	A:	About	Sortal	Structures	 56	..

Sortal	structures	and	behavioral	categories	 56	..

Data	types	and	characterisFc	individuals	 59	..

Annex	B:	About	Shape	Rules	and	DescripFon	Rules	 61	..

Shape	rules	 61	

DescripFons	and	descripFon	rules	 62	..

Parametric	descripFons	 62	..

DescripFon	literals	 62	..

DescripFon	tuples	 62	...

DescripFon	parameters	 63	..

Parameter	condiFonals	 63	...

Numerical	expressions	 63	..

String	expressions	 64	...

Tuple	expressions	 64	..

FuncFons	 64	..

References	 65	..

Shape	element	types	and	their	available	properFes	 65	..

A	formal	notaFon	for	descripFons	 67	..

DescripFon	funcFons	 71	..

Numerical	funcFons	 71	..

String	funcFons  
Tuple	funcFons	 72	...

Annex	C:	DescripFon	of	Sortal	Imports	 74	...

Annex	D:	Legacy	Methods	 78	...

Summary	of	all	methods	 78	...

draw_result	 79	...

draw_results	 80	...

find_rule_appns_ag	 81	..

create_shape_ag	 82	...

convert_to_agnosFc	 83	...

maximalize_ag	 85	..

sortal_setup	 86..

� 	3

About the SortalGI API

A	shape	rule	combines	a	specificaFon	of	recogniFon	and	manipulaFon.	A	shape	rule	is	commonly	specified	in	
the	form	lhs	→	rhs,	where	the	le_-hand-side	(lhs)	of	the	rule	specifies	the	pa6ern	to	be	recognized	and	the	
manipulaFon	of	the	current	shape	then	involves	replacing	the	recognized	lhs	by	the	right-hand-side	(rhs)	of	the	
shape	rule	in	the	shape	under	invesFgaFon.	RecogniFon	necessarily	applies	under	some	transformaFon,	for	
example,	a	similarity	transformaFon,	and	the	resulFng	manipulaFon	must	occur	under	the	same	transformaFon	
for	both	lhs	and	rhs.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	s	involves	determining	a	transformaFon	f	
such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	which	s	is	replaced	by	s	–	f(a)	+	f(b).	

Two	types	of	rules	are	disFnguished,	parametric	rules	and	non-parametric	rules.	The	la6er	are	the	easiest	to	
understand.	In	the	case	of	a	non-parametric	rule,	the	pa6ern	specified	by	the	lhs	of	the	rule	must	match	a	part	
of	the	given	shape	under	a	similarity	transformaFon	(translaFon,	rotaFon,	reflecFon	and/or	uniform	scaling).	
That	is,	when	matching	for	a	square	of	line	segments,	any	square	of	line	segments	from	the	given	shape	will	do,	
even	if	these	line	segments	extend	beyond	the	corner	points	of	the	square.	The	same	applies	when	matching	
for	a	rectangle,	however,	only	rectangles	with	the	same	raFo	between	length	and	width	will	be	matched.	

A	parametric	rule	matches	a	much	larger	variety	of	shapes.	In	principle,	when	matching	a	triangle	of	line	
segments,	any	triangle	of	line	segments	in	the	given	shape	will	be	matched,	irrespecFve	of	its	shape.	The	
corresponding	transformaFon	is	a	topological	transformaFon	though	there	is	no	mathemaFcal	representaFon	
for	such	a	transformaFon	(unlike	for	a	similarity	transformaFon).	However,	some	constraints	do	apply.	
Specifically,	parallel	and	perpendicular	lines	are	automaFcally	idenFfied	in	the	lhs	and	considered	as	constraints	
for	matching.	Thus,	specifying	a	right-angled	triangle	as	the	lhs	will	only	match	right-angled	triangles	in	the	
given	shape,	however,	specifying	an	equilateral	or	isosceles	triangle	as	the	lhs	will	have	no	effect,	any	triangle	in	
the	given	shape	will	be	matched.	

A	shape	grammar	generally	defines	a	collecFon	of	rules	together	with	an	iniFal	shape;	then,	the	language	
defined	by	a	shape	grammar	is	the	set	of	shapes	generated	by	the	rules	from	the	iniFal	shape.	However,	from	a	
user’s	point	of	view,	any	collecFon	of	rules	that	serves	a	parFcular	purpose	can	be	considered	a	shape	
grammar,	whether	or	not	it	requires	a	parFcular	iniFal	shape	or,	instead,	can	be	applied	to	a	wide	variety	of	
(iniFal)	shapes.		

Sortal	grammars	extend	on	shape	grammars.	Where	shape	grammars	commonly	rely	on	a	combinaFon	of	line	
segments	and	labelled	points,	sortal	grammars	take	a	modular	representaFonal	approach,	allowing	for	a	wide	
variety	of	geometric	and	non-geometric	elements	to	be	included	in	the	specificaFon	of	rules	and	grammars.	
Sortal	grammars	uFlize	sortal	structures	as	representaFonal	structures,	where	these	structures	are	defined	as	
formal	composiFons	of	other,	primiFve,	sortal	structures,	termed	sorts.	As	such,	sortal	grammars	consFtute	a	
class	of	formalisms	for	design	grammars	and	benefit	from	the	fact	that	every	component	sort	specifies	a	parFal	
order	relaFonship	on	its	individuals	and	forms,	defining	both	the	matching	operaFon	and	the	arithmeFc	
operaFons	for	rule	applicaFon.		

A	shape	grammar	interpreter	is	the	engine	that	supports	the	applicaFon	of	shape	rules,	including	recogniFon	
and	manipulaFon.	The	SortalGI	API	for	Rhinoceros	provides	access	to	the	SortalGI	sortal/shape	grammar	
interpreter	and	makes	(part	of)	its	funcFonality	available	within	the	Rhino	Python	programming	environment.	It	
allows	the	user	to	create	and	apply	shape	and	descripFon	rules	by	merging	the	capabiliFes	of	Rhinoceros	in	
drawing	shapes	and	storing	user	data	and	descripFons	onto	geometry	with	the	computaFonal	capabiliFes	of	
the	shape	grammar	interpreter.	

� 	4

API	development	by	Bianchi	Dy	 
System	development	by	Bui	Do	Phuong	Tung	 
Under	the	supervision	of	Rudi	Stouffs	

� 	5

SortalGI Installa9on and Setup for Rhinoceros

The	following	secFons	describe	the	step-by-step	process	of	installing	the	SortalGI	grammar	interpreter	and	its	
API	onto	Rhinoceros.	

1. Installing the SortalGI library

Run	the	‘setup’	widget	inside	the	folder	‘sortal-setup’.	In	addiFon	to	installing	the	‘sortal’	library,	this	will	install	
packages	such	as	‘future’,	‘enum’	and	‘mpmath’	in	the	right	locaFon,	which	are	necessary	for	compaFbility	
between	IronPython	and	the	SortalGI	API.	

� 	

When	prompted	for	Administrator	Access	by	the	‘setup’	batch	file,	select	‘Yes’.	Wait	for	the	packages	to	finish	

installing.	
AlternaFvely,	if	you	are	unable	to	run	the	‘setup’	widget,	you	may	manually	copy-paste	the	files	in	their	
respecFve	locaFons:	

▪ site-packages	� 		all	files	inside	

o Copy-paste	the	content	of	the	folder	‘sortal-setup\site-packages\	into	the	locaFon	 
C:\Program	Files\Rhinoceros	5	(64-bit)\Plug-ins\IronPython\Lib\site-packages	or	equivalent	on	
your	computer	

▪ sortal-packages	� 	sortal	
o Copy-paste	the	folder	‘sortal’	(inside	‘sortal-setup\sortal-packages)	into	the	locaFon	C:

\Program	Files\Rhinoceros	5	(64-bit)\Plug-ins\IronPython\Lib\	or	equivalent	on	your	computer	

2. Linking the SortalGI library to Rhinoceros

➔ Open	Rhino		

➔ Type	EditPythonScript	in	the	Rhino	command	box	

➔ In	the	Rhino	Python	Editor	window,	select	‘OpFons…’	from	the	Tools	menu	

➔ Add	the	Plug-ins\IronPython\Lib\site-packages	folder	of	your	Rhino	installaFon	folder	into	the	
'Module	Search	Paths'	

➔ Switch	from	the	‘Files’	tab	to	the	‘Script	Engine’	tab	(in	the	Python	OpFons	window)	

➔ Check	the	‘Frames	Enabled’	opFon	and	click	‘OK’	

➔ Close	Rhino	completely	and	relaunch	it	for	the	changes	to	take	effect	

≫

≫

� 	6

� 		�  

3. SeEng up the SortalGI library in Rhinoceros

Before	running	any	SortalGI	API	or	Rhino	API	methods,	it	is	necessary	to	set	up	the	SortalGI	library	first.	This	
involves	defining	the	sorts	(sortal	structures)	that	will	be	used.	There	are	two	ways	to	do	this.	Both	ways	refer	to	
the	folder	‘sortalgi’,	which	can	be	found	in	the	folder	‘demos\Rhino	demo’.	All	SortalGI	API	funcFons	can	be	
found	in	‘sortalgi’.	

a. Run	the	default	setup	script	by	imporFng	the	SortalGI	API	into	your	code:	
import sortalgi as _sgi  
_sgi.sortal_setup()

To	ensure	that	this	script	works,	save	it	in	the	same	folder	hierarchy	level	as	the	‘sortalgi’	folder.	To	run	
the	script,	use	the	‘Reset	engine	and	debug’	op6on	in	the	Rhino	Python	Editor,	found	where	the	
orange	box	indicates	in	the	picture	below.	

� 	

See	if	you	get	the	response	‘Setup	complete’	in	your	Python	Editor	window,	in	which	case	the	sortal	
library	and	API	funcFons	are	now	ready	for	use.	Note	that	any	scripts	run	a_er	‘sortal_setup()’	is	called	
that	use	Sortal	API	funcFons	must	be	run	using	the	green	Play	bu6on	or	the	‘Run	Script	(no	debug)’	
opFon,	indicated	by	the	green	box.	This	prevents	the	SortalGI	library	from	refreshing	completely	and	
maintains	previously	set	up	sorts.	

The	‘sortal_setup’	funcFon	is	explained	in	Annex	D:	Legacy	Methods,	it	is	considered	a	legacy	funcFon	
that	you	can	use	as	is,	or	you	can	customize	it	for	your	own	purpose	(see	‘sortalgi_init_.py’	for	some	
addiFonal	explanaFon	and	its	implementaFon).	Note	that	if	you	customize	‘sortal_setup’	or	define	
your	own	script	to	define	the	sorts	(sortal	structures)	for	the	SortalGI	grammar	interpreter,	you	must	
ensure	that	the	highest	Fer	sort	is	a	compound	sort	named	‘rhino_shapes_c’.	All	SortalGI	API	funcFons	
refer	to	the	compound	sort	named	‘rhino_shapes_c’.	

b. Upload	a	Sortal	Descrip6on	Language	(SDL)	file	by	using	the	funcFon	‘read_sdl’	from	the	API	
funcFons:	

� 	7

import sortalgi as _sgi  
_sgi.read_sdl(<sdl file name>)

Where	<sdl	file	name>	is	the	SDL	file	name	with	a	‘.sdl’	extension.	This	input	must	be	a	text	string,	and	
may	include	a	specificaFon	of	the	locaFon	of	the	SDL	file	if	it	is	not	located	within	the	same	folder	as	
the	acFve	Python	code.	However,	any	slashes	must	be	replaced	with	double	slashes.	For	example:	
_sgi.read_sdl(McNeel\\Rhinoceros\\5.0\\scripts\\sortal_3D\\demo scripts\
\rhino demo\\sortalgi\\sortal_lib_api)

The	format	and	notaFon	of	the	Sortal	DescripFon	Language	(SDL)	is	not	explained	in	this	document.	If	
you	are	interested	in	more	informaFon	about	this,	you	are	welcome	to	invesFgate	an	example	SDL	file	
(included	in	some	of	the	Rhino	demos)	or	you	may	find	some	(incomplete)	informaFon	at	h6p://
www.sortal.org/structures/SDL/index.html	

If	the	highest	Fer	sort	defined	inside	the	SDL	file	is	not	a	compound	sort	named	‘rhino_shapes_c’,	the	
‘read_sdl’	funcFon	will	a6empt	to	resolve	this	by	defining	(or	rewriFng)	a	compound	sort	named	
‘rhino_shapes_c’	to	contain	any	disjuncFve	sorts	defined	in	the	SDL	file.	If	a	compound	sort	named	
‘rhino_shapes_c’	already	existed	in	the	SortalGI	grammar	interpreter,	its	exisFng	disjuncFve	sorts	will	
remain	unless	overwri6en.	

4. Impor9ng future for Python 3.5 to Python 2.7 compa9bility

When	wriFng	scripts	using	the	SortalGI	API	and	library	in	Rhino	or	Python	2.7,	it	is	necessary	to	put	the	
following	lines	of	code	at	the	start	of	every	script	to	import	the	‘future’	package.	This	enables	compaFbility	
between	Python	3.5	(which	is	used	to	write	the	SortalGI	API	and	library)	and	RhinoPython,	which	uses	
IronPython	(equivalent	to	Python	2.7).	An	example	from	the	API	itself	is	shown	on	the	right-hand	side	below:	

from __future__ import print_function

from __future__ import division

from __future__ import unicode_literals

from __future__ import absolute_import

� 	8

http://www.sortal.org/structures/SDL/index.html
http://www.sortal.org/structures/SDL/index.html

API

All	funcFons	described	in	this	secFon	(and	imported	under	the	comment	'API	funcFon	imports'	in	the	sortalgi	
‘__init__.py’	file)	comprise	the	SortalGI	API.	Their	uses,	inputs	and	outputs	are	discussed	in	this	secFon.	

Import nota9on

▪ The	use	of	‘sgi’	in	this	secFon	refers	to	the	package	‘sortalgi’,	which	contains	all	the	methods	listed	
above	and	is	imported	in	code	snippet	examples	as	follows:	
import sortalgi as sgi

▪ The	references	to	‘sc.sFcky’	in	this	secFon,	on	the	other	hand,	refer	to	scriptcontext.sFcky,	which	
is	a	dicFonary	used	to	store	values	like	the	number	of	predicates/direcFves	of	a	certain	type	
currently	acFve	in	a	run	of	the	sortal	library,	or	the	spacing	allowance	(in	the	prevailing	workspace	
units)	for	drawing	shapes	in	the	Rhino	viewport.	It	is	imported	as	follows:	

import scriptcontext as sc

▪ The	terms	‘shape’	and	‘form’	are	used	interchangeably	in	this	secFon.	

▪ The	Rhinocommon	library	is	imported	in	the	following	variaFons:	
import Rhino as r

import Rhino.Geometry as rg

� 	9

Summary of all methods

NAME PURPOSE

apply_flow

Applies	a	flow	present	in	the	flow	register	onto	a	shape	present	in	the	form	register;	
returns	the	result	of	the	flow	applicaFon	as	a	list	of	Rhino	GUIDs,	which	are	by	default	
hidden	from	the	Rhino	viewport;	an	opFonal	Boolean	value	called	hide	may	be	set	to	
False	to	render	the	resulFng	list	of	Rhino	GUIDs	visible	in	the	viewport

check_precision Returns	current	precision	(as	number	of	decimal	places)	of	sortal	library

convert_shape
Converts	a	sortal	shape	to	the	target	sort	type	(this	target	sort	type	may	be	a	product	
of	‘convert_sort’	or	retrieved	directly	from	the	sort	register)

convert_sort

Determines	the	structure	of	a	shape's	top	sort	type	and	creates	the	target	equivalent	
sort	type	based	on	user	input;	all	external	descripFon	types	and	a6ributes	a6ached	to	
geometries	are	reflected	in	the	newly	constructed	sort 
 
(i.e.	2D	->	3D,	P2D	->	2D)

create_flow
Creates	a	flow	based	on	a	text	string	elaboraFng	the	order	and	use	of	exisFng	rules	in	
the	sortal	rule	register

create_rule
Creates	a	rule	object	from	the	inputs	rule	name,	rule	descripFon,	LHS	shape	name	and	
RHS	shape	name

create_shape
Creates	a	shape	object	from	the	following	inputs:	shape	name,	Rhino	geometry,	target	
sort	type;	the	target	sort	type	may	be	le_	blank	if	there	is	only	one	funcFoning	
geometric	disjuncFve	sort	acFve

default_precision Resets	precision	(as	number	of	decimal	places)	of	sortal	library	to	5

draw_rule

Draws	the	sides	of	a	rule	as	Rhino	geometry,	side	by	side	one	another;	the	drawing	
may	be	moved	to	a	different	locaFon	by	inpuLng	a	reference	point	(this	may	be	a	
tuple/list	of	three	numbers	or	a	Rhino	geometry	point	or	GUID),	where	the	reference	
point	serves	as	the	new	'origin'	for	the	drawing

draw_shape

Draws	the	shape	retrieved	from	the	form	register	as	Rhino	geometry;	the	drawing	may	
be	moved	to	a	different	locaFon	by	inpuLng	a	reference	point	(this	may	be	a	tuple/list	
of	three	numbers	or	a	Rhino	geometry	point	or	GUID),	where	the	reference	point	
serves	as	the	new	'origin'	for	the	drawing

extract_shape
Extracts	a	sub-shape	from	a	sortal	shape	based	on	the	target	sort	type	provided	by	the	
user

find_rule_appns

Generates	the	rule	applicaFons	from	a	given	rule-shape	combinaFon;	takes	as	input	a	
rule	object	or	rule	name,	a	sub-shape	name	(opFonal)	and	a	main	shape	name	and	an	
opFonal	Boolean	value	as	to	whether	to	hide	the	resulFng	Rhino	GUIDs	corresponding	
to	the	results;	returns	list	of	lists	of	GUIDs	corresponding	to	resulFng	shapes	a_er	rule	
applicaFons,	with	the	GUIDs	hidden	from	the	Rhino	viewport	by	default

get_rule_lhs Returns	LHS	of	rule	instance	as	a	list	of	Rhino	GUIDs

� 	10

get_rule_rhs Returns	RHS	of	rule	instance	as	a	list	of	Rhino	GUIDs

get_rule_descripFo
n

Returns	descripFon	of	rule	instance	as	a	text	string

maximalize
Maximalizes	a	sortal	shape	(called	by	its	name	from	the	form	register)/list	of	Rhino	
geometries	(if	the	la6er,	redraws	the	Rhino	geometries	and	returns	them)

move
Moves	lists	of	GUIDs	in	a	list	apart	from	another	based	on	the	dimensions	of	each	list's	
collecFve	bounding	box,	and	the	axis	of	movement	provided	by	the	user;	the	default	is	
to	move	the	shapes	to	the	right	(based	on	the	x-axis)	and	upwards

overwrite_sdl	
Overwrites	a	pre-exisFng	SDL	file	or	overwrites	certain	rules,	shapes	or	flows	in	a	pre-
exisFng	SDL	file;	this	funcFon	may	also	be	used	to	add	rules,	shapes	or	flows	to	a	pre-
exisFng	SDL	file

part_of
Checks	if	a	sub-shape	agnosFc	object/list	of	Rhino	geometries	is	part	of	a	potenFally	
larger	shape	agnosFc	object/set	of	Rhino	geometries

read_sdl	
Sets	up	rules	and	shapes	from	SDL	file	in	sortal	library;	adds	shapes	to	form	register;	
converts	SDL	file	rules	and	shapes	to	prevailing	'rhino_shapes_c'	sort	type;	rewrites	
contents	of	read	SDL	file	to	reflect	prevailing	'rhino_shapes_c'	structure,	if	necessary

redraw
Deletes	inpu6ed	Rhino	geometry	and	replaces	them	with	their	geometric	counterparts	
and	corresponding	labels,	descripFons,	predicates	and	direcFves	based	on	data	stored	
inside	the	user	text	of	the	original	geometry

save_sdl
Creates	a	new	SDL	file	or	overwrites	a	pre-exisFng	one	using	the	inpu6ed	file	name	
and	the	listed	rules,	shapes	and	flows

set_flow_descripFo
n

Changes	the	descripFon	of	the	given	flow	object

set_flow_name
Changes	the	flow	name	of	the	given	flow	instance;	if	the	new	flow	name	matches	that	
of	a	pre-exisFng	flow,	prompts	user	for	overwrite	or	renaming

set_precision Sets	precision	(as	number	of	decimal	places)	of	sortal	library	to	user	input

set_rule_descripFo
n

Changes	the	descripFon	of	the	given	rule	object

set_rule_name
Changes	rule	name	of	rule	instance;	if	new	rule	name	matches	that	of	a	pre-exisFng	
rule,	prompts	user	for	overwrite	or	change	of	rule	name	input

set_shape_name Changes	name	of	shape	object	and	updates	its	name	in	the	form	register

NAME PURPOSE

� 	11

apply_all_together

Finds	the	rule	applicaFons	of	a	rule	on	a	shape	(an	opFonal	subshape	input	may	be	used	to	limit	the	number	of	
matches	found	within	the	shape).	It	applies	all	rule	applicaFons	onto	the	shape	in	parallel	and	returns	the	sum	
of	the	results	of	the	rule	applicaFons	as	a	list	of	Rhino	GUIDs.	By	default,	these	drawings	are	hidden	from	the	
Rhino	viewport.	

Syntax

sgi.apply_all_together(chosenRule, shape, subshape = None, refPt =
r.Geometry.Point3d(0,0,0), layerName = 'Default', hide = True prnt = False,
shapeIds = None)

Parameters

Required	

▪ chosenRule:	Rule	name	as	text	string	

▪ shape:	Name	of	main	shape	as	text	string	as	recorded	in	sortal	library's	form	register	pertaining	to	
shape		

OpFonal	

▪ subshape:	Name	of	subshape	as	text	string	as	recorded	in	sortal	library's	form	register	pertaining	
to	subshape		

▪ refPt:	GUID	of	point,	tuple,	or	Rhino	Geometry	point	of	reference	point	which	will	serve	as	the	
'origin'	with	which	shapes	will	be	plo6ed	in	respect	to	(in	principle,	a	vector)	

▪ layerName:	Name	of	target	layer	as	text	string	within	Rhino	workspace	where	the	GUIDs	will	be	
drawn	onto	

▪ hide:	Boolean	value	True/False;	True	(default)	–	hides	Rhino	GUIDs	from	viewport;	False	–	keeps	
Rhino	GUIDs	visible	in	viewport	

▪ prnt:	Boolean	value	True/False;	True	-	prints	out	descripFon	individuals	as	input-ready	text	string	
(to	create_shape)	as	well	as	printE	form	of	shape	a_er	rule	applicaFon;	False	(default)	-	nothing	is	
printed	

▪ shapeIds:	List	of	Rhino	GUIDs	to	clear	a_er	new	shapes	have	been	drawn		

Returns

▪ appnGeometry:	List	of	lists	of	Rhino	GUIDs	(each	list	correspond	to	a	shape	a_er	a	certain	rule	
applicaFon),	if	successful;	these	geometries	are	hidden	from	the	viewport,	by	default	

▪ None,	if	unsuccessful	

Warnings & Errors

▪ TypeError:	If	iniFal	shape	or	subshape	is	not	a	list	of	GUIDs	or	a	text	string	or	is	empty,	or	if	the	
input	for	chosenRule	is	not	a	text	string	

▪ KeyError:		

o If	iniFal	shape	or	subshape	input's	name	is	not	present	in	the	form	register		

o If	rule	name	is	not	present	in	the	rule	register		

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	If	subshape	is	not	part	of	shape	->	exits	funcFon	and	returns	False	

� 	12

Example

chosenRule = ‘rule_1’

shape = ‘shape_1’

subshape = ‘shapelineSegments’

ruleAppns = sgi.find_rule_appns(chosenRule, shape, subshape)

The	funcFon	returns	a	list	of	lists	of	Rhino	GUIDs,	each	element	list	corresponding	to	a	rule	applicaFon.	By	
default,	the	shapes	are	drawn	on	top	of	one	another	and	hidden	from	the	Rhino	viewport.	The	funcFon	‘move’	
may	be	used	to	space	the	results	out	from	one	another,	and	rs.ShowObjects	may	be	used	on	the	elements	
inside	‘ruleAppns’	to	show	the	shapes.	

Pseudocode Snippet

This	secFon	illustrates	a	general	overview	of	the	rule	applicaFon	process	seen	in	‘apply_all_together’	in	the	
form	of	a	truncated	pseudocode	describing	the	contents	of	the	funcFon.	Note	that	some	of	the	notaFon	here	
may	not	necessarily	reflect	available	funcFons	in	the	API.	This	pseudocode	is	wri6en	such	that	secFons	of	the	
pseudocode	may	be	used	by	the	user	to	create	their	own	rule	applicaFon	‘convenience	funcFons’	for	
interacFng	with	the	sortal	library.	This	code	snippet	assumes	that	all	inputs	given	are	correct.	

def apply_all_together(ruleName, shapeName, subshapeName = None, refPt =
r.Geometry.Point3d(0,0,0), layerName = ‘Default’):

 # Retrieval of sortal objects

 # This section is similar across rule application functions

ruleObject = rule.register[ruleName]

 shapeSortal = form.formRegister[shapeName]

 totalShape = None

 # Determination of which shape to base rule application detection on

 if subshapeName != None:

 subshapeSortal = form.formRegister[subshapeName]

 ruleAppns = ruleObject.detect(subshapeSortal)

 else:

 ruleAppns = ruleObject.detect(shapeSortal)

 # This section will vary based on the intended behavior by the user

Proceeds with summing up results of rule application if > 0

 # Returns the sum

 if ruleAppns > 0:

 results = []

 for appn in ruleAppns:

 results.append(appn.perform(shapeSortal.duplicate()))

 totalShape = results[0]

 for result in results[1:]:

 totalShape.sum(result)

 return totalShape

 else:

 return None

� 	13

apply_flow

Applies	a	flow	operaFon	(a	sequence	of	rules	with	given	instrucFons	for	looping,	order	of	applicaFon	and	other	
condiFons)	onto	a	shape.	The	flow	string	and	the	shape	it	is	to	be	applied	are	retrieved	from	their	respecFve	
registers,	and	the	Rhino	GUIDs	of	the	result	of	the	flow	are	returned	(and	hidden	from	the	Rhino	Viewport).	If	
the	user	wishes	to	have	the	Rhino	GUIDs	be	visible,	set	the	last	value	('hide')	to	False.	

Syntax

sgi.apply_flow(flowName, shapeName, refPoint = r.Geometry.Point3d(0,0,0), hide
= True)

Parameters

▪ flowName:	Name	of	flow	inside	flow	register	to	be	applied	onto	shape	

▪ shapeName:	Name	of	shape	inside	form	register	that	the	flow	will	be	applied	onto	

▪ refPoint:	Reference	point	to	serve	as	'origin'	point	for	the	final	shape	a_er	the	flow;	the	shape	will	
be	moved	to	this	point;	the	default	origin	point	is	(0,0,0)	

▪ hide:	Boolean	True/False	value	if	output	Rhino	GUIDs	are	to	be	hidden;	True	(default)	-	hides	
Rhino	objects	from	viewport,	False	-	leaves	Rhino	objects	in	viewport	

Returns

▪ finalShapeRhino:	Rhino	GUIDs	(hidden	from	Viewport)	

▪ None	is	returned	if	the	flow	sequence	is	unsuccesful	

Warnings & Errors

▪ KeyError:	Shape	name	or	flow	name	does	not	exist	in	their	respecFve	registers	

▪ TypeError:	Reference	point	input	is	a	not	tuple/list	of	three	numbers,	a	Rhino	point	geometry	or	a	
GUID	OR	the	inputs	for	shape	name	and/or	flow	name	are	not	text	strings	

▪ Error:	If	the	number	of	elements	in	the	reference	point	tuple/list	is	not	exactly	three	numbers,	or	
if	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	If	the	flow	sequence	could	not	be	carried	out	successfully	

Example

flowName = ‘flow_1’

shapeName = ‘shape_1’

refPoint = refPoint = r.Geometry.Point3d(0,0,0)

new_shape = sgi.apply_flow(flowName, shapeName, refPoint, hide = False)

The	contents	of	‘new_shape’	will	be	a	list	of	Rhino	GUIDs	corresponding	to	the	drawing	of	the	shape	in	the	
Rhino	viewport.	Because	‘hide’	is	set	to	False,	the	resulFng	drawing	will	be	visible	in	the	workspace.	

check_precision

Returns	the	precision	of	comparison	(number	of	decimal	places)	inside	the	sortal	library	(an	integer	value)	

� 	14

Syntax

sgi.convert_to_agnostic(shapeRhino = [], classification = None, descriptions =
'', refPoint = Rhino.Geometry.Point3d(0,0,0))

Parameters

▪ None	

Returns

▪ Integer	value	corresponding	to	number	of	decimal	places	the	sortal	library	applies	onto	numbers	

Warnings & Errors

▪ None	

Example

sgi.check_precision()

This	returns	an	integer.	

convert_shape

Converts	the	contents	of	sortalShape	(a	sortal	shape	data	structure)	to	their	counterpart	geometric	sorts	in	
targetSort.	All	external,	standalone	descripFons	as	well	as	a6ributes	a6ached	to	the	geometries	are	carried	
over,	so	long	as	they	are	reflected	in	targetSort	

Syntax

sgi.convert_shape(sortalShape = None, targetSort = None, newName = None)

Parameters

▪ sortalShape:	Text	string.	The	name	of	the	shape	or	the	sortal	shape	data	structure	to	be	converted	
to	the	target	sort	in	targetSort;	this	may	have	a	primiFve,	a6ribute	or	disjuncFve	sort	type;	if	the	
input	has	a	compound	sort	type	and	there	is	only	one	funcFoning	geometric	disjuncFve	sort	inside	
the	compound	sort,	then	the	shape	corresponding	to	this	funcFoning	geometric	disjuncFve	sort	is	
extracted	and	converted	to	the	target	sort	

▪ targetSort:	Text	string.	The	name	of	the	target	sort	type	or	the	sort	type	data	structure	that	is	the	
end	goal	of	the	conversion;	this	may	be	a	primiFve,	a6ribute	or	disjuncFve	sort;	if	the	target	sort	
type	is	a	compound	sort,	an	error	will	be	raised.	

To	illustrate	possible	conversion	cases:	

a.	sortalShape:	'shape_1'	with	sort	type	meta3D,	targetSort:	metaP2D;	this	will	convert	the	geometric	
individuals	of	'shape_1'	to	P2D	geometric	individuals	and	retain	any	a6ribute	types	carried	over	to	
metaP2D.	However,	if,	for	example,	meta3D	has	line	segments	with	labels,	while	metaP2D	has	
primiFve	line	segments	only,	then	the	labels	a6ached	to	line	segments	in	'shape_1'	will	not	be	
maintained.	

b.	sortalShape:	'line1'	with	sort	type	lineSegP3D,	targetSort:	lineSeg2D;	this	will	construct	the	shape	
'line1'	as	non-parametric,	2D	line	segments.	The	same	behavior	regarding	a6ribute	maintenance	
applies	here	as	in	(a).	

� 	15

c.	Sort	type:	ellipFcalArc3D,	targetSort:	'P3D';	this	is	not	possible,	as	ellipFcal	arcs	are	not	enabled	for	
parametric	behavior	in	the	sortal	library.	

d.	Sort	type:	meta3D	(disjuncFve,	including	pointN3D),	targetSort:	pointP2D;	in	this	case,	only	the	
pointP3D	form	will	be	retrieved	from	meta3D	and	turned	to	its	non-parametric	2D	counterpart	and	
outpu6ed.	

e.	Sort	type:	rhino_shapes_c,	with	only	one	funcFoning	geometric	disjuncFve	sort	(N3D)	because	the	
other	sort	type	present	is	a	dummy	disjuncFve	sort	composed	of	two	descripFon	sorts.	

▪ newName:	The	name	of	the	converted	shape	that	will	be	registered	in	the	shape	and	the	form	
register	(text	string);	if	none	is	given,	then	the	name	of	the	original	shape	and	the	target	sort	are	
concatenated	to	create	a	name	for	the	shape	

Returns

▪ newSortalShape:	Returns	converted	sortal	shape	with	geometric	individuals	reflecFng	a6ribute	
structure,	and	non-parametric/parametric	behavior	of	targetSort,	if	successful	

▪ False:	if	unsuccessful	

Warnings & Errors

▪ TypeError:		

o If	the	input	for	‘sortalShape’,	‘targetSort’	or	‘newName’	is	not	a	text	string,		

o If	the	input	for	‘targetSort’	is	a	compound	sort	

▪ KeyError:		

o If	the	sortal	shape	or	target	sort	does	not	exist	in	the	form/sort	register	

o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	If	the	sort	type	of	sortalShape	is	already	the	same	as	the	target	sort	

Example

The	sort	type	to	be	used	in	conversion	is	first	retrieved	from	the	sort	register.

new_sort = sort.register[‘P3D’]

This	retrieves	a	shape	with	a	non-parametric	3D	disjuncFve	sort	(housed	under	the	compound	sort	
‘rhino_shapes_c’)	and	converts	it	to	the	disjuncFve	sort	‘P3D’.	The	new	shape	is	given	the	name	‘shape_2’	in	
the	form	register.	

new_sort = sgi.convert_sort(‘shape_1’, new_sort, ‘shape_2’)

convert_sort

Determines	and	constructs	the	counterpart	sort	type	contained	in	sortalStructure,	according	to	the	target	sort's	
specified	parametric-dimension	combinaFon	(e.g.,	non-parametric	2D	-	N2D,	non-parametric	3D	-	N3D,	
parametric	2D	-	P2D,	parametric	3D	-	P3D)		

Syntax

sgi.convert_to_agnostic(shapeRhino = [], classification = None, descriptions =
'', refPoint = Rhino.Geometry.Point3d(0,0,0))

� 	16

Parameters

▪ sortalStructure:	Name	(text	string)	or	actual	data	structure	of	sort	type	to	be	converted	over	to	
new	parametric-dimension	structure;	this	can	be	a	disjuncFve,	a6ribute	or	primiFve	sort	

▪ targetSort:	Text	string	of	target	sort	type;	this	may	be	2D	or	3D,	non-parametric	or	parametric	

▪ For	example:	

▪ a.	sortalStructure:	meta3D,	targetSort:	'P2D';	this	will	determine	and	construct	the	sort	type	that	
mirrors	the	geometry	and	their	a6ributes	in	meta3D,	but	as	parametric	2D	geometric	sorts	

▪ b.	sortalStructure:	lineSegP3D,	targetSort:	'N2D';	this	will	construct	the	2D	line	segment	geometric	
sort	and	bring	over	any	a6ributes	present	in	lineSegP3D	

▪ c.	sortalStructure:	ellipFcalArc3D,	targetSort:	'P3D';	this	is	not	possible,	as	ellipFcal	arcs	are	not	
enabled	for	parametric	behavior	in	the	sortal	library	

Returns

▪ targetSortType:	New	sort	type	corresponding	to	targetSort	variaFon,	that	mirrors	base	geometry	
in	sortalStructure,	but	converts	them	to	their	counterparts	as	in	targetSort,	if	successful.	If	the	
sortal	structure	being	converted	is	a	disjuncFve	sort,	it	is	automaFcally	included	in	
'rhino_shapes_c';	otherwise,	it	is	only	stored	in	the	sort	register	

▪ None,	if	unsuccessful	

Warnings & Errors

▪ TypeError:	Input	for	sortalStructure	is	neither	a	text	string	nor	a	sort	type	data	structure,	or	input	
for	targetSort	is	not	a	text	string	

▪ KeyError:		

o If	input	for	sortalStructure	is	a	text	string	that	is	not	present	in	the	sort	register	

o 	if	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

original_sort = sort.register[‘P3D’]

new_sort = sgi.convert_sort(original_sort, ‘N2D’)

This	returns	a	new	sortal	structure	based	on	the	sort	types	in	‘original_sort’,	but	enabled	with	non-parametric	
2D	sort	types	

create_flow

Creates	a	flow	from	the	inputs	flowName	(name	of	the	flow	object),	flowDesc	(descripFon	of	the	flow	object),	
and	flowSeq	(text	string	sequence	of	rule	names	and	ordering,	looping	and	execuFon	instrucFons)	

Syntax

sgi.create_flow(flowName, flowDesc = '', flowSeq = '')

Parameters

▪ flowName:	Flow	name	(text	string);	this	will	be	used	to	retrieve	the	flow	object	from	the	flow	
register	

� 	17

▪ flowDesc:	Flow	descripFon	(text	string,	opFonal);	this	is	used	to	describe	the	flow	object	

▪ flowSeq:	Flow	sequence	(text	string);	this	text	string	contains	the	sequence	of	rules	as	well	as	their	
ordering,	looping	and	execuFon	instrucFons	

Returns

▪ newFlow:	The	flow	sortal	data	structure	is	returned	if	the	flow	is	successfully	created	

Warnings & Errors

▪ TypeError:	If	the	input	for	flowName,	flowDesc,	or	flowSeq	is	not	a	text	string	

▪ ValueError:	If	the	input	for	flowName	or	flowSeq	is	empty,	or	a	rule	name	specified	in	flowSeq	is	
not	present	in	the	rule	register	

▪ KeyError:		

o If	a	flow	object	with	the	same	data	as	flowName	already	exists	in	the	flow	register	

o 	if	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

flowName = ‘f1’

flowDesc = ‘test flow’

flowSequence = ‘rul1 (rul2 rul3{2})*’

sgi.create_flow(flowName, flowDesc, flowSequence)

create_rule

Creates	a	new	rule	instance;	it	takes	as	input	the	rule	name,	rule	descripFon,	LHS	and	RHS	agnosFc	shapes/
shape	names/Rhino	geometries,	predicates	(for	LHS)	and	direcFves	(RHS).	Since	‘create_rule’	is	linked	to	the	
sortal	library,	the	act	of	creaFng	a	rule	object	checks	if	a	rule	with	the	same	name	as	the	new	rule	being	created	
already	exists.	If	yes,	then	the	rule	is	not	created	and	the	funcFon	is	exited.		

Syntax

sgi.create_rule(ruleName, ruleDesc, lhs, rhs, predLHS = None, dirRHS = None,
prnt = False)

Parameters

▪ ruleName:	Name	of	rule	to	be	created	(text	string)		

▪ ruleDesc:	DescripFon	of	rule	to	be	created	(text	string)	

▪ lhs:	Name	of	shape	to	become	LHS	of	rule	(text	string)	

▪ rhs:	Name	of	shape	to	become	RHS	of	rule	(text	string)	

▪ predLHS:	AgnosFc	dicFonary	of	predicates	(opFonal);	usually,	this	is	obtained	from	
sgi.create_shape	

▪ dirLHS:	AgnosFc	dicFonary	of	direcFves	(opFonal);	usually,	this	is	obtained	from	sgi.create_shape	

▪ prnt:	Boolean	value,	corresponding	to	whether	to	print	if	rule	was	created	successfuly,	and	as	to	
which	predicates/direcFves	were	added	to	the	rule	successfully		

� 	18

Returns

▪ Sortal	rule	data	structure,	if	successful	

▪ None,	if	unsuccessful	

Warnings & Errors

▪ MessageBox:	If	a	rule	with	the	same	name	already	exists	in	the	sortal	register,	then	the	user	is	
prompted	for	whether	they	would	like	to	overwrite	the	pre-exisFng	rule	or	to	give	the	rule	to	be	
created	a	different	name	or	to	exit	the	create_rule	funcFon;	alternaFvely,	if	the	geometry	within	
the	rule	object's	LHS	is	insufficient	

▪ TypeError:	If	the	input	for	rule	name	or	rule	descripFon	or	LHS	shape	name	or	RHS	shape	name	is	
not	a	text	string	

▪ KeyError:		

o If	the	shapes	corresponding	to	the	inputs	for	the	LHS	and	RHS	shape	names	are	not	present	in	
the	form	register	

o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

ruleName = ‘rule_1’

ruleDesc = ‘test rule’

lhsName = ‘shape_lhs’

rhsName = ‘shape_rhs’

newRule = sgi.create_rule(ruleName, ruleDesc, lhsName, rhsName, predicates,
directives)

The	shapes	corresponding	to	the	names	‘shape_lhs’	and	‘shape_rhs’	are	retrieved	from	the	form	register	and	
are	used	to	create	the	rule.	The	funcFon	also	stores	the	newly	created	rule	instance	in	the	sortal	library.	A	rule	
object	can	be	retrieved	later	by	using	the	property	of	the	sortal	library	import	‘rule’,	called	‘register’:	

ruleObject = rule.register[ruleName] 	

This	returns	the	sortal	rule	object.	

create_shape

Creates	a	sortal	shape	from	a	collecFon	of	Rhino	GUIDs.	It	names	the	shape	according	to	the	input	for	the	
shapeName	variable	in	the	sortal	library.	It	returns	the	predicate/direcFve	dicFonaries.		

Syntax

sgi.create_shape(shapeName = None, shapeData = None, descriptions = '',
classification = None, refPoint = rg.Point3d(0,0,0), prnt = False)

Parameters

▪ shapeName:	Name	of	shape	(text	string)	

▪ shapeData:	List	of	Rhino	GUIDs	that	will	compose	the	sortal	shape	

▪ descripFons:	Text	string	of	descripFons	to	include	in	the	sortal	shape,	e.g.	

'label1@("A2",	1,	1234);("A3",	4,	1234)|label2@("A1",	1,	1234)|label2@("A9",	8,	1234)'	

� 	19

where	there	are	two	descripFon	types,	'label1'	(followed	by	an	ampersand	“@”;	2	individuals	
separated	by	a	semicolon	“;”),	and	'label2'	(2	individuals);	declaraFon	of	different	descripFon	types	
and	their	individuals	is	separated	by	a	verFcal	dash	“|”	

▪ classificaFon:	Name	of	target	disjuncFve	sort	type	(text	string);	this	sort	type	must	already	be	
present	in	the	sort	register	under	the	compound	sort	'rhino_shapes_c';	this	input	may	be	le_	
blank	if	there	is	only	one	acFve	geometric	disjuncFve	sort	inside	‘rhino_shapes_c’	and	the	other	
sort	is	a	dummy	sort	composed	of	two	descripFon	sort	types	

▪ refPoint:	Reference	point	to	serve	as	'origin'	point	for	shape;	the	default	origin	point	is	(0,0,0)	

▪ prnt:	Boolean	value	(True/False);	True	-	prints	the	resulFng	sortal	shape	according	to	the	output	of	
the	'printE'	command	in	the	sortal	library;	False	(default)	-	does	not	print	anything	

Returns

▪ predicates:	Predicates	dicFonary	

▪ direcFves:	DirecFves	dicFonary	

Warnings & Errors

▪ TypeError:	If	shapeName	input	is	not	a	text	string,	or	if	shapeData	input	is	not	a	list	of	Rhino	
GUIDs,	or	if	shapeData	has	any	elements	that	are	not	Rhino	GUIDs	inside	

▪ KeyError:		

o If	the	result	Rhino	GUIDs	to	AgnosFc	DicFonary	conversion	is	empty		

o if	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	If	descripFons	input	is	not	a	text	string	

Example

shapeLHS = rs.GetObjects('Select LHS shape')

LHSdesc = 'segmentCount@t|platform@(name?="bp", count?>0, leng, wid, layer,
ad_type, ad_count)'

pt1 = rs.GetObject('Select a reference point')

predicates, directives = sgi.create_shape ('shapeL', shapeLHS, LHSdesc, 'P2D',
pt1)

default_precision

Sets	precision	of	comparison	(number	of	decimal	places)	inside	sortal	library	back	to	default	(5).	

Syntax

sgi.default_precision()

Parameters

▪ None	

Returns

▪ Integer	value	corresponding	to	number	of	decimal	places	the	sortal	library	applies	onto	numbers	
(in	this	case,	5)	

� 	20

Warnings & Errors

▪ None	

Example

sgi.default_precision()

draw_rule

'draw_rule'	draws	the	sides	of	a	rule	in	the	Rhino	workspace.	This	funcFon	supposes	that	the	rule	is	already	
present	in	the	rule	register.The	rule	sides	are	drawn	apart	from	each	other,	with	the	space	between	them	
dictated	by	the	value	of	'fixed_factor'	or	the	size	of	the	bounding	box	of	the	LHS	GUIDs.	When	a	reference	point	
is	given	(tuple/list/vector/point),	the	rule	shapes	are	moved	to	the	reference	point.	The	default	reference	point	
is	the	origin	(0,0,0).		

Syntax

sgi.draw_rule(ruleName, refPt = r.Geometry.Point3d(0,0,0)

Parameters

▪ ruleName:	Name	of	rule	object	to	draw	from	inside	the	rule	register	(text	string)	

▪ refPt:	Reference	point	(opFonal	-	tuple	/	list	of	integers	or	floats	/	vectors	/	points	(3Ds));	relocates	

▪ drawings	of	rule	sides	with	reference	point	serving	as	the	origin;	default	origin	is	(0,0,0)	

Returns

▪ List	of	lists	in	the	form	[lhsRhino,	rhsRhino]	or	[lhsMoved,	rhsMoved]:	List	of	lists	of	Rhino	
Geometry	[[lhs	shape	GUIDs],	[rhs	shape	GUIDs]];	an	empty	list	is	returned	if	the	rule	cannot	be	
found	in	the	rule	register	

Warnings & Errors

▪ KeyError:		

o If	rule	name	does	not	exist	in	the	rule	register	

o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	Rule	name	input	is	not	a	text	string	

Example

ruleName = ‘rule_1’

pt = rs.GetObject(‘Select reference point for rule drawing’)

sgi.draw_rule(ruleName, pt) #

� 	21

draw_shape

Draws	the	shape	in	the	Rhino	workspace.	This	funcFon	assumes	that	the	shape	is	already	present	in	the	form	
register.	When	a	reference	point	is	given	(tuple/list/vector/point),	the	shape	GUIDs	are	moved	to	the	reference	
point.	The	default	reference	point	is	the	origin.	The	name	of	the	shape	must	already	be	present	in	the	form	
register	for	this	funcFon	to	work.	

Syntax

sgi.draw_shape(shapeName, refPt = r.Geometry.Point3d(0,0,0))

Parameters

▪ shapeName:	Name	of	shape	object	to	draw	from	inside	form	register	(text	string)	

▪ refPt:	Reference	point	(opFonal	-	tuple	/	list	of	integers	or	floats	/	vectors	/	points	(3Ds));	relocates	
drawing	of	shape	with	reference	point	serving	as	the	origin;	default	origin	is	(0,0,0)	

Returns

▪ shapeNewRhino:	List	of	Rhino	Geometry	[shape	GUIDs];	this	is	returned	as	an	empty	list	the	shape	
does	not	exist	in	the	shape	register	

Warnings & Errors

▪ Warning:	Shape	with	the	inpu6ed	shape	name	does	not	exist	in	the	form	register	

▪ TypeError:	Shape	name	input	is	not	a	text	string	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	
not	yet	been	set	up	

Example

shape_name = ‘shape_1’

shape_guids = sgi.draw_shape(shape_name)

extract_shape

Searches	for	a	shape	inside	the	input	sortal	shape	with	the	same	sort	type	and	sort	level	as	the	target	sort	type	
input.	For	example,	if	a	shape	containing	only	line	segments	needs	to	be	retrieved	and	the	corresponding	sort	
type	to	these	line	segments	is	called	‘lineSegment-A’,	then	the	target	sort	type	input	is	‘lineSegment-A’	and	a	
shape	with	the	sort	type	‘lineSegment-A’	is	returned	if	it	exists	inside	the	input	sortal	shape.	

Syntax

sgi.extract_shape(sortalShape, targetSortType, shapeName = None)

Parameters

▪ sortalShape:	Name	of	shape	(text	string)	or	sortal	shape	data	structure	

▪ targetSortType:	Name	of	sort	type	(text	string)	or	sort	type	data	structure	

▪ shapeName:	Name	of	extracted	shape;	this	is	used	to	register	the	extracted	shape	in	the	form	
register,	if	it	is	successfully	extracted	

� 	22

Returns

▪ result:	Sortal	shape	(actual	sortal	shape	data)	corresponding	to	targetSortType	and	registered	in	
the	form	register,	if	successful	

▪ None,	if	no	such	shape	with	the	same	sort	as	the	target	sort	type	can	be	found	inside	the	input	

Warnings & Errors

▪ TypeError:	If	the	input	for	sortalShape	/	targetSortType	(/shapeName)	is	neither	a	text	string	or	a	
sortal	shape	data	structure/sort	type	data	structure	

▪ KeyError:		

o If	sortalShape	or	targetSortType	is	a	text	string	input,	this	error	is	raised	if	they	do	not	exist	in	
the	form/sort	register	

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	If	sortalShape	does	not	contain	any	sort	type	equal	to	targetSortType	

Example

newShape = sgi.extract_shape(‘shape_1’, ‘lineSegment’, ‘lineSegments’)

This	returns	the	sortal	form	with	the	disjuncFve	sort	‘lineSegment’	and	stores	it	in	the	form	register	under	the	
name	‘lineSegments’.	

find_rule_appns

Finds	the	rule	applicaFons	of	a	rule	on	a	shape	(an	opFonal	subshape	input	may	be	used	to	limit	the	number	of	
matches	found	within	the	shape).	It	returns	a	list	of	lists	of	GUIDs,	with	each	list	corresponding	to	the	result	of	
the	rule	applicaFon	on	the	shape	as	drawn	in	the	Rhino	workspace.	By	default,	these	drawings	are	hidden	from	
the	Rhino	viewport.	

Syntax

sgi.find_rule_appns(chosenRule, shape, subshape = None, refPt =
r.Geometry.Point3d(0,0,0), layerName = 'Default', hide = True, prnt = False,
shapeIds = None)

Parameters

Required	

▪ chosenRule:	Rule	name	as	text	string	

▪ shape:	Name	of	main	shape	as	text	string	as	recorded	in	sortal	library's	form	register	pertaining	to	
shape		

OpFonal	

▪ subshape:	Name	of	subshape	as	text	string	as	recorded	in	sortal	library's	form	register	pertaining	
to	subshape		

▪ refPt:	GUID	of	point,	tuple,	or	Rhino	Geometry	point	of	reference	point	which	will	serve	as	the	
'origin'	with	which	shapes	will	be	plo6ed	in	respect	to	(in	principle,	a	vector)	

▪ layerName:	Name	of	target	layer	as	text	string	within	Rhino	workspace	where	the	GUIDs	will	be	
drawn	onto	

� 	23

▪ hide:	Boolean	value	True/False;	True	(default)	–	hides	Rhino	GUIDs	from	viewport;	False	–	keeps	
Rhino	GUIDs	visible	in	viewport	

▪ prnt:	Boolean	value	True/False;	True	-	prints	out	descripFon	individuals	as	input-ready	text	string	
(to	create_shape)	as	well	as	printE	form	of	shape	a_er	rule	applicaFon;	False	(default)	-	nothing	is	
printed	

▪ shapeIds:	List	of	Rhino	GUIDs	to	clear	a_er	new	shapes	have	been	drawn		

Returns

▪ appnGeometry:	List	of	lists	of	Rhino	GUIDs	(each	list	correspond	to	a	shape	a_er	a	certain	rule	
applicaFon),	if	successful;	these	geometries	are	hidden	from	the	viewport,	by	default	

▪ None,	if	unsuccessful	

Warnings & Errors

▪ TypeError:	If	iniFal	shape	or	subshape	is	not	a	list	of	GUIDs	or	a	text	string	or	is	empty,	or	if	the	
input	for	chosenRule	is	not	a	text	string	

▪ KeyError:		

o If	iniFal	shape	or	subshape	input's	name	is	not	present	in	the	form	register		

o If	rule	name	is	not	present	in	the	rule	register		

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ Warning:	If	subshape	is	not	part	of	shape	->	exits	funcFon	and	returns	False	

Example

chosenRule = ‘rule_1’

shape = ‘shape_1’

subshape = ‘lineSegments’

ruleAppns = sgi.find_rule_appns(chosenRule, shape, subshape)

The	funcFon	returns	a	list	of	lists	of	Rhino	GUIDs,	each	element	list	corresponding	to	a	rule	applicaFon.	By	
default,	the	shapes	are	drawn	on	top	of	one	another	and	hidden	from	the	Rhino	viewport.	The	funcFon	‘move’	
may	be	used	to	space	the	results	out	from	one	another,	and	rs.ShowObjects	may	be	used	on	the	elements	
inside	‘ruleAppns’	to	show	the	shapes.	

get_rule_lhs

Returns	the	sortal	data	structure	corresponding	to	the	LHS	in	the	given	rule	input,	or	if	rhino	is	set	to	True,	
creates	a	drawing	of	the	rule	LHS	in	the	Rhino	viewport	and	returns	the	corresponding	list	of	Rhino	GUIDs.	

Syntax

sgi.get_rule_lhs(name, rhino = True)

Parameters

▪ name:	Name	of	target	rule	object		

� 	24

▪ rhino:	Boolean	value,	indicates	if	side	of	rule	should	be	drawn	and	returned	as	list	of	Rhino	GUIDs;	
True	(default)	-	returns	Rhino	GUIDs	(hidden	from	viewport),	False	-	returns	sortal	form	
corresponding	to	target	rule	side	

Returns

▪ Rule	object	descripFon	(text	string);	LHS	or	RHS	(as	sortal	shape	or	as	hidden	Rhino	GUIDs	
generated	in	original	locaFon	of	rule),	if	successful	

▪ None,	if	not	successful	

Warnings & Errors

▪ TypeError:	If	rule	name	input	is	not	a	string	

▪ KeyError:		

o If	rule	name	input	is	not	present	in	the	rule	register		

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

lhsGUIDs = sgi.get_rule_lhs(‘rule_1’)

This	funcFon	call	returns	a	list	of	GUIDs	corresponding	to	the	drawing	of	the	LHS	in	the	Rhino	viewport.

OR	

lhsShape = sgi.get_rule_lhs(‘rule_1’, False) 	

This	returns	the	sortal	data	structure	corresponding	to	the	LHS	in	‘rule_1’.	

get_rule_rhs

Returns	the	sortal	data	structure	corresponding	to	the	RHS	in	the	given	rule	input,	or	if	rhino	is	set	to	True,	
creates	a	drawing	of	the	rule	RHS	in	the	Rhino	viewport	and	returns	the	corresponding	list	of	Rhino	GUIDs.	

Syntax

sgi.get_rule_rhs(name, rhino = True)

Parameters

▪ name:	Name	of	target	rule	object		

▪ rhino:	Boolean	value,	indicates	if	side	of	rule	should	be	drawn	and	returned	as	list	of	Rhino	GUIDs;	
True	(default)	-	returns	Rhino	GUIDs	(hidden	from	viewport),	False	-	returns	sortal	form	
corresponding	to	target	rule	side	

Returns

▪ Rule	object	descripFon	(text	string);	LHS	or	RHS	(as	sortal	shape	or	as	hidden	Rhino	GUIDs	
generated	in	original	locaFon	of	rule),	if	successful	

▪ None,	if	not	successful	

Warnings & Errors

▪ TypeError:	If	rule	name	input	is	not	a	string	

� 	25

▪ KeyError:		

o If	rule	name	input	is	not	present	in	the	rule	register		
o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	

been	set	up	

Example

rhsGUIDs = sgi.get_rule_rhs(‘rule_1’)

This	returns	a	list	of	GUIDs	corresponding	to	the	drawing	of	the	RHS	in	the	Rhino	viewport.	

OR	

rhsShape = sgi.get_rule_rhs(‘rule_1’, False)

This	returns	the	sortal	data	structure	corresponding	to	the	RHS	in	‘rule_1’.	

get_rule_descrip9on

Returns	the	descripFon	text	of	the	given	rule	object,	if	the	rule	exists.	

Syntax

sgi.get_rule_description(name)

Parameters

▪ name:	Text	string;	name	of	target	rule	object		

Returns

▪ Text	string	of	rule	object	descripFon,	if	successful	

▪ None,	if	not	successful	

Warnings & Errors

▪ TypeError:	If	rule	name	input	is	not	a	string	

▪ KeyError:		

o If	rule	name	input	is	not	present	in	the	rule	register		

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

descriptionText = sgi.get_rule_description(‘rule_1’)

maximalize

Accepts	the	name	of	a	shape	object	or	a	list	of	Rhino	GUIDs	and	returns	the	maximalized	sortal	shape	or	its	
corresponding	list	of	Rhino	GUIDs.	

� 	26

Syntax

sgi.maximalize(shape, target = None, rhino = False, hide = False, delete =
False)

Parameters

▪ shape:	Shape	data	in	the	form	of	a	list	of	Rhino	GUIDs	(target	disjuncFve	sort	for	maximalized	
must	be	provided)	or	the	shape	name	as	a	text	string	

▪ target:	Target	disjuncFve	sort	for	the	shape	to	be	maximalized	(text	string),	this	is	necessary	if	the	
input	is	a	list	of	Rhino	GUIDs	

▪ rhino:	Boolean	value	(True/False);	True	-	returns	list	of	Rhino	GUIDs	corresponding	to	maximalized	
shape;	False	(default)	-	returns	agnosFc	form,	please	note	that	if	Rhino	GUIDs	are	given	as	input,	
then	Rhino	GUIDs	will	be	returned	

▪ hide:	Boolean	value	(True/False);	True	-	hides	Rhino	geometry	output	from	viewport;	False	
(default)	-	leaves	Rhino	geometry	output	visible	in	viewport	

▪ delete:	Boolean	value	(True/False);	if	the	inputs	are	a	list	of	Rhino	GUIDs,	then	True	deletes	the	
inputs,	and	False	(default)	leaves	the	inputs	sFll	in	the	Rhino	viewport	

Returns

▪ maxShape:	If	a	shape	name	is	inpu6ed,	then	it	returns	the	maximalized	sortal	data	structure	of	
the	shape	unless	the	variable	rhino	is	set	to	True	

If	a	list	of	Rhino	GUIDs	is	inpu6ed,	then	it	returns	a	list	of	Rhino	GUIDs	corresponding	to	the	
maximalized	form	by	default	

Warnings & Errors

▪ TypeError:	If	type	of	input	is	invalid	(i.e.	not	a	list	of	Rhino	GUIDs	or	a	shape	name	text	string)	

▪ ValueError:	If	input	is	an	empty	list	or	if	shape	name	doest	not	exist	in	the	form	register	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	
not	yet	been	set	up	

Example

shapeName = ‘shape_1’

maximalShape = sgi.maximalize(shapeName)

Forgoing	the	target	sort	type	is	allowed	so	long	as	there	is	only	one	acFve	geometric	disjuncFve	sort	within	
‘rhino_shapes_c’.	This	funcFon	call	will	return	the	maximalized	sortal	data	structure	corresponding	to	
‘shapeName’	in	the	form	register.	

OR	

maximalShapeGUIDs = sgi.maximalize(shapeName, rhino = True, hide = True)

This	funcFon	call	will	return	a	list	of	Rhino	GUIDs,	but	will	hide	them	from	the	Rhino	viewport,	as	‘hide'	

move

Spaces	out	the	shapes	in	a	list	based	on	either	the	translaFonVec	variable	(if	a	valid	input	is	giving)	or	based	on	
the	bounding	box	dimensions	mulFplied	by	the	value	of	sc.sFcky	in	verFcal	order.	The	Rhino	GUIDs	of	the	
moved	shape(s)	are	returned.	

� 	27

Syntax

sgi.move(shapes, alignment = False, translationVec = False)

Parameters

▪ shapes:	List	of	Rhino	GUID	lists	or	list	of	Rhino	GUIDs,	translaFon	vector	(opFonal)	

▪ alignment:	Vector	that	will	be	reduced	to	unit	vector	to	determine	axis	of	moved	shapes	(e.g.	
verFcal	ascending	or	horizontal	going	to	the	right,	etc.)	

▪ translaFonVec:	Single	vector	or	list	of	vectors,	that	serve.s	as	the	spacing	reference	vector/s	
between	shapes.	The	space	between	the	first	and	second	shapes	will	follow	the	first	vector	
element	of	the	list,	the	space	between	the	second	and	third	shapes	will	follow	the	second	vector	
element	of	the	list,	and	so	on.	

Returns

▪ movedShapes:	List	of	Rhino	GUID	lists	a_er	moving	the	geometries	

▪ None,	if	unsuccessful	

Warnings & Errors

▪ TypeError:	If	data	type	of	alignment	and/or	translaFon	vector	is	not	a	tuple	or	list	of	three	
numbers	or	a	Vector3d	object	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	
not	yet	been	set	up	

▪ Warning:	If	the	input	for	the	reference	point	is	invalid	(not	a	tuple	or	a	list	of	three	numbers	or	a	
Rhino	point	geometry)	

Example

chosenRule = ‘rule_1’

shape = ‘shape_1’

subshape = ‘lineSegments’

ruleAppns = sgi.find_rule_appns(chosenRule, shape, subshape)

sgi.move(ruleAppns, alignment = r.Geometry.Vector3d(1,0,0), translationVec =
r.Geometry.Vector3d(10,0,0))

overwrite_sdl	

Stores	rules,	flows	and	an	iniFal	shape	in	an	SDL	file	based	on	the	variable	fileName,	by	accepFng	their	name	
references,	and	retrieving	the	relevant	sortal	objects.	If	an	SDL	file	with	the	same	name	already	exists,	then	the	
user	is	prompted	if	they	want	to	overwrite	the	file	or	give	a	new	value	to	fileName.	The	input	for	the	file	name	
of	the	intended	SDL	file	may	also	include	the	address	of	the	intended	locaFon.	

Syntax

sgi.overwrite_sdl(fileName, rules = [], shapes = [], flows = [], append =
False, prnt = True)

� 	28

Parameters

▪ fileName:	Text	string	of	file	name	(for	.sdl	file;	this	may	include	the	intended	locaFon's	full	
address)	

▪ rules:	List	of	sortal	rule	object	names	(opFonal,	this	may	be	an	empty	list)	

▪ shape:	One	shape	object	name	(opFonal,	this	may	be	ignored)	

▪ flows:	List	of	sortal	flow	object	names	(opFonal,	this	may	be	an	empty	list)	

Note:	If	including	the	full	address	of	the	target	SDL	file,	the	following	format	must	be	observed:	

	'C:\\Users\AKIDRIBM\\AppData\\Roaming\\Grasshopper\\Libraries\\source_code_gh_dev\\'+	<sdl	
file	name>	+'.sdl'	

where	every	slash	is	doubled.	

Returns

▪ If	successful,	an	SDL	file	of	name	'fileName'	in	the	intended	locaFon	with	rule(s)	and	shape	stored	
in	it	is	created,	and	True	is	returned.	Otherwise	-	

▪ False:	Unsuccessful	operaFon	

Warnings & Errors

▪ Warning:	If	a	rule,	form	(shape)	or	flow	does	not	exist	in	their	corresponding	register,	or	if	the	SDL	
file	with	the	target	file	name	does	not	exist,	or	if	the	SDL	file	name	does	not	have	the	'.sdl'	
extension	

▪ TypeError:	If	the	input	for	rules,	shapes,	flows	are	not	lists,	or	if	there	is	an	invalid	input	(not	a	text	
string)	within	the	lists	

▪ KeyError:		

o If	a	rule,	form	or	flow	name	within	a	list	does	not	exist	in	the	corresponding	register		

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

fileName = ‘rules_3D.sdl’

rules = [‘WHL-1a’]

shapes = [‘shape_1’]

flows = [‘f1’, ‘f2’]

sgi.overwrite_sdl(fileName, rules, shapes, flows, append = True, prnt = True)

part_of

Checks	if	a	subshape	agnosFc	tuple	is	part	of	a	possibly	larger	shape	agnosFc	tuple	

Syntax

sgi.part_of(subshape, shape)

Parameters

▪ subshape:	List	of	Rhino	GUIDs	or	name	of	subshape	

� 	29

▪ shape:	List	of	Rhino	GUIDs	or	name	of	shape	 	

Returns

▪ True:	If	the	subshape	is	part	of	the	shape	

▪ False:	If	the	subshape	is	not	part	of	the	shape	

Warnings & Errors

▪ KeyError:		

o If	either	shape	or	subshape	name	is	not	available	in	the	form	register	

o If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

▪ TypeError:	If	either	shape	or	subshape	input	is	not	a	text	string	

Example

result = sgi.part_of(subshapeAgnostic, shapeAgnostic)

read_sdl

Opens	an	SDL	file	and	merges	any	compound	sorts	inside	with	the	prevailing	iteraFon	of	the	compound	sort	
'rhino_shapes_c'	in	the	sort	register.	It	also	updates	any	rules	and	shapes	with	outdated	sort	types	not	set	to	
the	prevailing	compound	sort	'rhino_shapes_c'	and	rewrites	the	SDL	file	to	ensure	compaFbility	with	the	API.	

Syntax

sgi.read_sdl(fileName)

Parameters

▪ fileName:	SDL	file	name;	if	including	the	full	address	of	the	target	SDL	file,	the	following	format	
must	be	observed:	
'C:\\Users\AKIDRIBM\\AppData\\Roaming\\Grasshopper\\Libraries\
\source_code_gh_dev\\'+ <sdl file name> +'.sdl'

where	every	slash	is	doubled.	

Returns

▪ True:	if	successful	

▪ False:	if	unsuccessful	

Warnings & Errors

▪ KeyError:	If	the	file	name	does	not	exist	

Example

sgi.read_file(‘rules_3D.sdl’)

OR	

sgi.read_sdl(‘'C:\\Users\AKIDRIBM\\AppData\\Roaming\\Grasshopper\\Libraries\
\source_code_gh_dev\\rules_3D.sdl')

� 	30

redraw

'redraw'	redraws	an	inpu6ed	list	of	Rhino	GUIDs	with	their	corresponding	tags,	predicates,	direcFves,	
labels	and	descripFons.	The	original	Rhino	GUIDs	inpu6ed	into	the	funcFon	are	deleted,	along	with	
any	text	dots	that	serve	only	as	tag	data	and	predicate/direcFve	informaFon	holders.	

Syntax

sgi.redraw(rhinoObject, targetSort = 'N3D')

Parameters

▪ rhinoObject:	List	of	Rhino	GUIDs	to	redraw	

▪ targetSort:	Name	of	target	disjuncFve	sort	type	to	classify	geometry	under	(necessary,	default	is	
non-parametric	3D	disjuncFve	sort	'N3D')	

Returns

▪ objectIds:	List	of	Rhino	GUIDs	corresponding	to	redrawn	geometry;	the	funcFon	also	deletes	
theinpu6ed	list	of	Rhino	GUIDs,	generates	new	list	of	GUIDs	as	outputs	

Warnings & Errors

▪ TypeError:		

o If	any	elements	inside	rhinoObject	are	not	Rhino	GUIDs		

o If	the	input	for	rhinoObject	is	not	a	list	of	Rhino	GUIDs	

▪ Error:	If	the	sortal	library	has	not	yet	been	set	up,	i.e.	if	the	compound	sort	'rhino_shapes_c'	does	
not	yet	exist	in	the	sort	register	

Example

shape_list = rs.GetObjects(‘Select shape to be redrawn’)

shape_list_redrawn = sgi.redraw(shape_list)

The	target	sort	type	input	may	be	forgone	when	using	‘redraw’	if	there	is	only	one	acFve	geometric	sort	type	in	the	
compound	sort	‘rhino_shapes_c’.	However,	in	the	case	of	mulFple	acFve	geometric	sort	types	in	‘rhino_shapes_c’,	it	
is	advised	that	a	target	sort	type	for	the	shape	be	inpu6ed,	as	otherwise,	the	‘redraw’	funcFon	will	base	the	sort	type	
of	the	shape	on	the	first	disjuncFve	sort	it	encounters.	

save_sdl

Stores	rules,	flows	and	an	iniFal	shape	in	an	SDL	file	based	on	the	file	name	input,	by	accepFng	their	name	
references,	and	retrieving	the	relevant	sortal	objects.	If	an	SDL	file	with	the	same	name	already	exists,	then	the	
user	is	prompted	if	they	want	to	overwrite	the	file	or	give	a	new	value	to	the	file	name	input.	The	input	for	
'fileName'	can	also	include	the	address	of	the	intended	locaFon.	

Syntax

sgi.save_sdl(fileName = 'new.sdl', rules = [], shape = '', flows = [])

Parameters

▪ fileName:	Text	string	of	file	name	(for	.sdl	file;	this	may	include	the	intended	locaFon's	full	
address)	

� 	31

▪ rules:	List	of	sortal	rule	object	names	(opFonal,	this	may	be	an	empty	list)	

▪ shape:	One	shape	object	name	(opFonal,	this	may	be	ignored)	

▪ flows:	List	of	sortal	flow	object	names	(opFonal,	this	may	be	an	empty	list)	

Returns

▪ True:	If	successful;	an	SDL	file	of	name	'fileName'	in	the	intended	locaFon	with	rule(s)	and	shape	
stored	in	it	is	created	

▪ False:	If	unsuccessful	

Warnings & Errors

▪ MessageBox:	If	an	SDL	file	with	the	same	file	name	already	exists	in	the	locaFon;	the	user	is	
prompted	if	they	would	like	to	overwrite	the	file	or	give	the	current	save_sdl	funcFon	a	new	file	
name	input	

▪ Warning:	If	the	rule	or	shape	or	flow	name	does	not	exist	in	its	corresponding	register	

▪ TypeError:		

o If	the	input	for	rules	or	flows	is	not	a	list	or	the	input	for	shape	is	not	a	string		

o If	there	are	any	non-text	inputs	within	the	input	for	rules	or	flows	

▪ KeyError:		

o If	the	shape	name	does	not	exist	in	the	form	register		

o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	
been	set	up	

Example

sgi.save_sdl(fileName = 'new.sdl', [‘rul_1’, ‘rul_2’], [‘shape_1’, ‘shape_2’],
[‘f1’, ‘f2’])

set_flow_descrip9on

Changes	the	descripFon	of	a	flow	object	in	the	sortal	flow	register.		

Syntax

sgi.set_flow_description(flowName, newDesc)

Parameters

▪ flowName:	Name	of	flow	object	(text	string)	

▪ newDesc:	New	descripFon	for	flow	object	(text	string)	

Returns

▪ True:	If	successful	

▪ False:	If	successful	

Warnings & Errors

▪ KeyError:	If	the	original	flow	name	does	not	exist	in	the	sort	register	

� 	32

▪ Error:	If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	
yet	been	set	up	

▪ Warning:	If	the	input	for	the	new	descripFon	or	the	original	flow	name	is	not	a	text	string	

Example

sgi.set_flow_description(‘f1’, ‘new description text’)

set_flow_name

Changes	the	name	of	a	flow	object	in	the	sortal	flow	register.	However,	if	the	new	flow	name	matches	that	of	a	
pre-exisFng	flow,	this	will	cause	an	error.	If	successful,	the	previous	flow	name	is	deleted	from	the	sortal	
library's	flow	register	and	is	free	to	use	for	new	flows.	

Syntax

sgi.set_flow_name(oldName, newName)

Parameters

▪ oldName:	Name	of	target	flow	object	to	be	altered	(text	string)	

▪ newName:	New	name	of	target	flow	object	(text	string)	

Returns

▪ True:	If	successful	

▪ False:	If	unsuccessful	

Warnings & Errors

▪ TypeError:	If	shapeRhino	is	not	a	list	of	Rhino	GUIDs	OR	if	‘descripFons’	is	not	None	or	a	text	string	

▪ Warning:	If	conversion	was	unsuccessful	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	
set	up	

Example

sgi.set_flow_name(‘f1’, ‘flow_2’)

set_precision

Sets	precision	of	comparison	(number	of	decimal	places)	inside	sortal	library	(integer	value).	

Syntax

sgi.set_precision(new)

Parameters

▪ new:	Integer	value	referring	to	number	of	decimal	places	to	indicate	precision	

� 	33

Returns

▪ True:	if	successful	in	seLng	new	precision	value	

▪ False:	if	unsuccessful	

Warnings & Errors

▪ None	

Example

sgi.set_precision(10)

The	precision	in	the	sortal	library	is	now	10	decimal	places.	

set_rule_descrip9on

Changes	the	descripFon	of	a	rule	object	in	the	sortal	rule	register.		

Syntax

set_rule_description(ruleName, newDesc)

Parameters

▪ ruleName:	Name	of	rule	object	(text	string)	

▪ newDesc:	New	descripFon	for	rule	object	(text	string)	

Returns

▪ True:	If	successful	

▪ False:	If	unsuccessful	

Warnings & Errors

▪ KeyError:		

o If	the	original	rule	name	does	not	exist	in	the	sort	register	
o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	

been	set	up	

▪ Warning:	If	the	input	for	the	new	descripFon	or	the	original	rule	name	is	not	a	text	string	

Example

newRuleDescription = 'new rule description'

sgi.set_rule_description(‘rul_1’, newRuleDescription)

set_rule_name

Changes	the	name	of	a	rule	object	in	the	sortal	rule	register;	however,	if	the	new	rule	name	matches	that	of	a	
pre-exisFng	rule,	this	will	cause	an	error.	If	successful,	the	previous	rule	name	is	deleted	from	the	sortal	library's	
rule	register	and	is	free	to	use	for	new	rules.	

� 	34

Syntax

sgi.set_rule_name(oldName, newName)

Parameters

▪ oldName:	Name	of	target	rule	object	to	be	altered	(text	string)	

▪ newName:	New	name	of	target	rule	object	(text	string)	

Returns

▪ True:	If	successful	

▪ False:	If	unsuccessful	

Warnings & Errors

▪ KeyError:		

o If	the	original	rule	name	does	not	exist	in	the	sort	register	

o If	the	new	rule	name	already	exists	in	the	sort	register	or	if	'rhino_shapes_c'	is	not	present	in	
the	sort	register,	i.e.	sort	types	in	sortal	library	has	not	yet	been	set	up	

▪ Warning:	If	the	input	for	the	original	rule	name	or	the	new	rule	name	is	not	a	text	string	

Example

sgi.set_rule_name(‘rul1’, ‘rule_1’)

set_shape_name

Changes	the	name	of	a	shape	in	the	sortal	form	register.

Syntax

sgi.set_shape_name(shapeName, newShapeName)

Parameters

▪ shapeName:	Name	of	shape	object	to	be	changed	(text	string)	

▪ newShapeName:	New	name	of	target	shape	object	(text	string)	

Returns

▪ True:	If	successful	

▪ False:	If	unsuccessful	

Warnings & Errors

▪ KeyError:	If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sort	types	in	sortal	library	has	
not	yet	been	set	up	

▪ Warning:	If	the	input	for	the	original	shape	name	or	the	new	shape	name	is	not	a	text	string					

Example

sgi.set_shape_name(‘shape_1’, ‘shape_1_subshape’)

� 	35

Rhino Methods

The	funcFons	listed	in	this	secFon	are	used	to	add	or	remove	informaFon	relaFng	to	a6ributes	(weight,	color,	
descripFons),	predicates	and	direcFves	to	Rhino	geometry.	These	are	collected	alongside	geometric	informaFon	
when	Rhino	GUIDs	are	converted	to	sortal	shape	data	structures.	

For	all	methods	to	do	with	adding	labels,	descripFons,	predicates	and	direcFves	to	the	geometry,	any	specific	
predicate	or	direcFve	tag	or	label	or	descripFon	text	already	exisFng	in	the	UserText	of	the	selected	geometry	is	
not	added	again	to	the	data	of	the	geometry.	

Import nota9on

The	use	of	‘rm’	in	this	secFon	refers	to	the	class	‘rhino_methods’,	which	contains	all	the	methods	listed	in	this	
secFon	and	is	imported	in	code	snippet	examples	as	follows:	

from sortalgi import rhino_methods as rm

The	terms	‘key	name’	and	‘tag	name’	refer	to	the	key	name	of	the	Rhino	geometry,	that	is	used	to	recognize	it	
in	the	sortal	library	when	adding	predicate	and	direcFve	data.	

� 	36

Summary of all methods

NAME PURPOSE

add_bound_line
Adds	bound	line	predicate	tag	to	line	segment/polyline;	indicated	as	'bound'	within	
predicates	text	('#()')

add_color
Adds	color	to	Rhino	Object	(one	or	several	objects	may	be	selected)	using	RGB	values;	this	
color	is	not	visible	in	Print	Preview	Mode

add_descripFon
Adds	descripFon	to	Rhino	Object's	user	text,	visualized	as	text	dot	with	extra	'd()'	
enclosing	text	in	the	visual	text	dot	assigned	to	geometry

add_distance

Adds	distance	direcFve	tag	to	geometries;	first	selected	geometry	may	be	found	in	either	
LHS	or	RHS,	second	selected	geometry	must	be	found	in	RHS;	range	of	values	for	length	is	
inpu6ed	to	funcFon	call;	direcFve	is	indicated	as	'distance'	within	the	direcFves	text	
('#()')	in	the	visual	text	dot	assigned	to	geometry

add_enum Adds	enumeraFve	value	to	Rhino	Object's	user	text,	not	visualized

add_label
Adds	label	data	to	Rhino	Object's	user	text,	visualized	as	text	dot	with	extra	'l()'	enclosing	
text	in	the	visual	text	dot	assigned	to	geometry

add_longest_line
Adds	longest-line	predicate	tag	to	line	segment/s;	indicated	as	'longest'	within	predicates	
text	('#()')	in	the	visual	text	dot	assigned	to	geometry

add_max_line
Adds	max-line	predicate	tag	to	line	segment/s,	indicated	as	‘max’	within	predicates	text	
('#()')	in	the	visual	text	dot	assigned	to	geometry

add_no_label
Adds	no-label	predicate	tag	to	geometry	to	constrain	matching	to	geometries	without	
label	a6ributes.	This	is	indicated	as	'no_label'	within	predicates	text	('#()')	in	the	visual	
text	dot	assigned	to	geometry

add_normal
Adds	normal	direcFve	tag	to	line	segments	(if	2D)	or	plane	segments	(if	3D).	This	is	
indicated	as	‘normal	^	<group_name>’	within	the	direcFves	text	('#()')	in	the	visual	text	
dot	assigned	to	geometry

add_point_on_li
ne

Adds	point-on-line	direcFve	tag	to	line	segment/polyline,	with	the	upper	and	lower	
bounds	for	the	range	of	segment	values	for	point	placement	inpu6ed	to	funcFon	call;	this	
is	visually	indicated	as	'point_on_line	^	<group_name>'	within	the	direcFves	text	('#()')

add_shortest_lin
e

Adds	shortest	line	predicate	tag	to	line	segment/polyline;	indicated	as	'short'	within	
predicates	text	('#()')	in	the	visual	text	dot	assigned	to	geometry

add_void

Adds	void	predicate	tag	to	collecFon	of	points/text	dots/line	segments/a	single	plane	
segment	that	form	a	closed	polygon;	indicated	as	'void'	within	predicates	text	('#()'),	and	
indicates	which	void	group	it	belongs	to	in	the	visual	text	dot	assigned	to	the	collecFon	of	
geometry

add_weight
Adds	width	(weight)	to	line	or	grayscale	(weight255)	to	point	or	text	dot	in	the	visual	text	
dot	assigned	to	geometry

analysis
Analyzes	a	list	of	Rhino	GUIDs	and	moves	points/extends	lines	to	intersect	directly	with	
each	other	(for	lines	to	intersect	with	each	other,	for	points	to	line	on	lines)	in	the	visual	
text	dot	assigned	to	geometry

� 	37

clear_shape
Clears	a	list	of	Rhino	objects;	takes	as	input	a	list/dicFonary	of	Rhino	GUIDs	OR	single	
Rhino	GUID

delete_descripF
on

Removes	descripFon	from	Rhino	Object's	user	text	and	in	the	visual	text	dot	assigned	to	
geometry;	deletes	text	dot	'a6ached'	to	line	segment	or	plane	segment,	or	reverts	text	
dot	to	a	point,	if	the	UserText	of	the	Rhino	Object	becomes	empty	a_er	removing	the	
descripFon

delete_label

Removes	label	from	Rhino	Object's	user	text	and	in	the	visual	text	dot	assigned	to	
geometry;	deletes	text	dot	'a6ached'	to	line	segment	or	plane	segment,	or	reverts	text	
dot	to	a	point,	if	the	UserText	of	the	Rhino	Object	becomes	empty	a_er	removing	the	
label

delete_pred_dir
Removes	predicate/direcFve	data	from	Rhino	Object	and	from	the	visual	text	dot	
assigned	to	the	geometry

delete_tag
Removes	geometry	tag	from	Rhino	Object	and	from	the	visual	text	dot	assigned	to	the	
geometry

clear_everything Deletes	all	Rhino	objects	in	Rhino	workspace,	and	clears	all	registers	in	the	back-end

tag
Adds	or	changes	the	tag	data	stored	in	a	Rhino	geometry	and	changes	the	visual	text	dot	
'a6ached'	to	the	geometry	accordingly

NAME PURPOSE

� 	38

add_bound_line

Adds	bound	line	predicate	tag	to	line	segment/polyline;	indicated	as	'bound'	within	the	predicates	text	('#()')	in	
the	visual	text	dot	assigned	to	geometry	

Syntax

rm.add_bound_line(ends = 2, tagSelf = True)

Parameters

▪ ends:	Integer	(0,	1	or	2);	this	indicates	whether	the	line	will	be	bounded	on	the	le_	side	only	(0),	
the	right	side	only	(1),	or	both	sides	(2)	

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	tagging	of	geometry/ies	with	bound	line	direcFve	is	successful;	otherwise,	a	TypeError	will	
be	raised	

Warnings & Errors

▪ TypeError:		

o If	input	for	ends	is	not	one	of	the	integers	0,	1	or	2		

o If	any	of	the	Rhino	geometry	in	the	list	of	selected	objects	is	not	a	straight	curve	(line	
segment)	

Example

rm.add_bound_line(ends = 2)

add_color

Adds	color	to	Rhino	Object	(one	or	several	objects	may	be	selected)	using	RGB	values.	This	color	is	not	visible	in	
Print	Preview	Mode.	

Syntax

rm.add_color(r, g, b)

Parameters

▪ r:	Integer	(value	between	0	and	255,	inclusive	of	the	two	end	values)	correlaFng	to	Red	value	of	
(R,	G,	B)	color	scale	

▪ g:	Integer	(value	between	0	and	255,	inclusive	of	the	two	end	values)	correlaFng	to	Green	value	of	
(R,	G,	B)	color	scale	

▪ b:	Integer	(value	between	0	and	255,	inclusive	of	the	two	end	values)	correlaFng	to	Blue	value	of	
(R,	G,	B)	color	scale	

� 	39

Returns

▪ True:	If	successful	

▪ False:	If	unsuccessful	

Warnings & Errors

▪ ValueError:	If	value	of	r,	g	or	b	is	not	in	between	0	and	255	

▪ TypeError:	If	any	of	the	input	values	is	not	an	integer	

Example

rm.add_color(235, 0, 225)

The	user	is	then	prompted	which	objects	to	change	the	color	of.	If	mulFple	objects	are	selected	for	one	
funcFon	call,	then	all	these	objects	will	have	the	same	color	as	one	another.	

add_descrip9on

Adds	descripFon	data	to	Rhino	Object's	user	text,	visualized	as	text	dot	with	extra	'd()'	enclosing	text	in	the	
visual	text	dot	assigned	to	geometry.	The	user	is	first	prompted	to	select	the	objects	to	add	descripFons	to,	and	
then	for	the	descripFon	text	to	add	onto	each	object.		

If	any	items	in	the	descripFon	text	are	to	be	treated	as	string	literals	or	as	‘labels’,	then	they	should	be	enclosed	
with	double	quotes	(”	“).	

Syntax

rm.add_description(count = True)

Parameters

▪ count:	Boolean	value,	indicaFng	whether	a	single	object	or	several	objects	are	to	be	selected	for	
placing	label	data	onto;	True	(default)	–	several	objects;	False	–	single	object	

Returns

▪ True:	If	successful;	a	statement	indicaFng	how	many	objects	were	given	labels	is	also	printed	in	the	
Rhino	viewport	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ Warning:	If	no	objects	were	selected	

Example

rm.add_description()

This	allows	the	user	to	select	mulFple	objects	(as	‘count’	is	set	to	True	by	default).	Each	object	will	have	the	
funcFon	prompFng	the	user	for	the	desired	descripFon	text.	

� 	40

add_distance

Adds	distance	direcFve	tag	to	geometries;	first	selected	geometry	may	be	found	in	either	LHS	or	RHS,	second	
selected	geometry	must	be	found	in	RHS;	range	of	values	for	length	is	inpu6ed	to	funcFon	call;	direcFve	is	
indicated	as	'distance'	within	the	direcFves	text	('#()')	in	the	visual	text	dot	assigned	to	geometry.	Note	that	if	
for	the	value(s)	for	the	range	of	the	distance	of	the	new	RHS	object,	if	these	inputs	exceed	20	characters,	then	
they	are	not	included	in	the	visual	text	dot	text	of	the	geometry.	

Syntax

rm.add_distance(dist1 = None, dist2 = None, tagSelf = True)

Parameters

▪ dist1:	Float,	integer	or	descripFon	text	string;	minimum	value	of	distance	of	LHS	geometry	(first	object	
selected)	from	RHS	geometry	(second	object	selected)	

▪ dist2:	Float,	integer	or	descripFon	text	string;	maximum	value	of	distance	of	LHS	geometry	(first	object	
selected)	from	RHS	geometry	(second	object	selected)	

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	tagging	of	geometry/ies	with	bound	line	direcFve	is	successful;	otherwise,	a	TypeError	will	be	
raised	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	

o 	If	no	values	are	inpu6ed	for	either	‘dist1’	

o 	if	either	of	the	objects	selected	by	the	funcFon	are	not	straight	curves	(line	segments)	or	
points	or	text	dots	

▪ ValueError:	If	input	values	for	either	‘dist1’	or	‘dist2’	are	not	float	numbers,	integers	or	descripFon	text	
strings	

Example

rm.add_distance(10, 20)

OR		

rm.add_distance(15)

add_embeds

Adds	the	embeds	predicate	to	two	Rhino	Objects’	user	text.	The	user	is	prompted	to	select	two	geometries;	the	
first	one	is	the	container	geometry	in	which	the	second	geometry	must	be	embedded	inside.	Based	on	the	
constraints	of	the	sortal	library,	the	first	geometry	must	be	either	a	plane	segment	or	a	line	segment.	If	the	

� 	41

former,	only	points	and	line	segments	are	allowed	in	the	selecFon	of	the	second	geometry.	If	the	la6er,	then	
only	points	are	allowed.	

Syntax

rm.embeds()

Parameters

▪ None	

Returns

▪ True:	If	successful	

▪ False:	If	no	object	was	selected	

Warnings & Errors

▪ None	

Example

rm.embeds()

The	text	displayed	in	the	visual	text	dots	of	the	selected	geometry	show	the	key	name	/	tag	name	of	the	Rhino	
geometry	they	are	paired	with,	with	respect	to	the	embeds	predicate.	

add_enum

Adds	enumeraFve	value	to	Rhino	Object's	user	text.	The	user	is	first	prompted	for	the	object	to	add	the	
enumeraFve	value	to,	and	then	is	prompted	for	the	single	enumeraFve	value.	The	la6er	is	stored	in	the	
UserText	of	the	geometry.	This	is	not	visualized	in	the	visual	text	dot	a6ached	to	the	geometry.	

Syntax

rm.enum()

Parameters

▪ None	

Returns

▪ True:	If	successful	

▪ False:	If	no	object	was	selected	

Warnings & Errors

▪ None	

Example

rm.enum()

� 	42

add_label

Adds	label	data	to	Rhino	Object's	user	text,	visualized	as	text	dot	with	extra	'l()'	enclosing	text	in	the	visual	text	
dot	assigned	to	geometry.	The	user	is	first	prompted	to	select	the	objects	to	add	labels	to,	and	then	for	the	
label	text	to	add	onto	each	object.		

Syntax

rm.add_label(count = True)

Parameters

▪ count:	Boolean	value,	indicaFng	whether	a	single	object	or	several	objects	are	to	be	selected	for	
placing	label	data	onto;	True	(default)	–	several	objects;	False	–	single	object	

Returns

▪ True:	If	successful;	a	statement	indicaFng	how	many	objects	were	given	labels	is	also	printed	in	the	
Rhino	viewport	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ Warning:	If	no	objects	were	selected	

Example

rm.add_label()

This	allows	the	user	to	select	mulFple	objects	(as	‘count’	is	set	to	True	by	default).	Each	object	will	have	the	
funcFon	prompFng	the	user	for	the	desired	label	text.	

add_longest_line

Adds	longest-line	predicate	tag	to	line	segment/s.	This	is	indicated	as	'longest'	within	predicates	text	('#()')	in	
the	visual	text	dot	assigned	to	geometry.	

Syntax

rm.add_longest_line(tagSelf = True)

Parameters

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	If	any	of	the	objects	selected	by	the	funcFon	are	not	straight	curves	(line	segments)	

� 	43

Example

rm.add_longest_line()

The	user	is	then	prompted	to	select	which	Rhino	objects	to	add	the	predicate	tag	to.	

add_max_line

Adds	max-line	predicate	tag	to	line	segment/s.	This	is	indicated	as	‘max’	within	predicates	text	('#()')	in	the	
visual	text	dot	assigned	to	geometry.	

Syntax

rm.add_max_line(tagSelf = True)

Parameters

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	If	any	of	the	objects	selected	by	the	funcFon	are	not	straight	curves	(line	segments)	

Example

rm.add_max_line()

The	user	is	then	prompted	to	select	which	Rhino	objects	to	add	the	predicate	tag	to.	

add_no_label

Adds	no-label	predicate	tag	to	geometry	to	constrain	matching	to	geometries	without	label	a6ributes.	This	is	
indicated	as	'no_label'	within	predicates	text	('#()')	in	the	visual	text	dot	assigned	to	geometry.	

Syntax

rm.add_no_label(tagSelf = True)

Parameters

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

� 	44

Warnings & Errors

▪ None	

Example

rm.add_no_label()

The	user	is	then	prompted	to	select	which	Rhino	objects	to	add	the	no-label	tag	to.	

add_normal

Adds	normal	direcFve	tag	to	line	segments	(if	2D)	or	plane	segments	(if	3D).	This	is	indicated	as	‘normal	^	
<group_name>’	within	the	direcFves	text	('#()')	in	the	visual	text	dot	assigned	to	geometry.	Note	that	if	for	the	
value(s)	for	the	range	of	the	length	of	the	new	normal	line,	if	these	inputs	exceed	20	characters,	then	they	are	
not	included	in	the	visual	text	dot	text	of	the	geometry.	

Syntax

rm.add_normal(rhsTag, length, targetCoords = None, tagSelf = True)

Parameters

▪ rhsTag:	Text	string	that	will	be	the	tag	name	of	the	new	normal	line	

▪ length:	A	single	integer,	float,	descripFon	string	or	a	list/tuple	of	two	integers,	floats,	descripFon	
strings	(the	two	elements	need	not	necessarily	be	the	same	data	type);	if	a	list/tuple	is	given	as	input,	
then	the	first	element	is	considered	the	lower	bound	of	the	range	for	the	length	of	the	normal	line	
segment	to	be	generated,	and	the	second	element	the	upper	bound	of	the	same	range	

▪ targetCoords:	List/tuple	of	two	numbers	(<x,	y>	coordinates)	or	Rhino	GUID	(point	or	text	dot)	that	will	
represent	the	direcFonal	vector	that	the	normal	line	segment	will	be	perpendicular	to;	this	direcFonal	
vector	must	exist	in	the	chosen	geometry,	be	it	a	line	segment	or	a	plane	segment	

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:		

o If	the	input	for	‘rhsTag’	is	not	a	text	string	

o If	the	input	for	length	is	neither	a	single	integer,	float,	descripFon	string	nor	a	list/tuple	of	two	
integers,	floats,	descripFon	strings	(the	two	elements	need	not	necessarily	be	the	same	data	
type)		

▪ Value	Error:	

o If	there	are	more	than	two	elements	in	the	input	for	length	of	the	new	normal	line	segment	

o If	any	of	the	objects	selected	by	the	funcFon	are	not	straight	curves	(line	segments)	

� 	45

Example

The	following	funcFon	call	and	inputs	adds	a	direcFve	to	generate	a	new	normal	line	segment	with	length	10	
based	on	a	pre-exisFng	line	segment	with	the	direcFonal	vector	<20,	15>	present	inside	it.	The	new	normal	line	
segment	will	have	the	tag	name	‘lineSegment-2’.	

rm.add_normal(‘2’, 10, (20,15))

AlternaFvely,	the	funcFon	call	and	inputs	adds	a	direcFve	to	generate	a	new	normal	line	segment	with	its	
length	between	10	and	15	based	on	a	pre-exisFng	plane	segment.	The	new	normal	line	segment	will	have	the	
tag	name	‘lineSegment-2’.	

rm.add_normal(‘2’, [10, 15])

add_point_on_line

Adds	point-on-line	direcFve	tag	to	line	segment(s)/polyline(s).	The	upper	and	lower	bounds	for	the	range	of	
segment	values	for	point	placement	is	inpu6ed	to	funcFon	call.	A_erwards,	the	user	is	prompted	to	select	the	
line	segments	which	will	have	this	direcFve	added	to	their	UserText.	This	is	visually	indicated	as	'point_on_line	
^	<group_name>'	within	the	direcFves	text	('#()').	

Syntax

rm.add_point_on_line(seg1 = None, seg2 = None, tagSelf = True)

Parameters

▪ seg1:	A	float	value	(0	<	x	<	1)	that	serves	as	the	lower	bound	of	the	segment	range	where	the	new	
point	will	lie	on	the	line	segment	

▪ seg2:	A	float	value	(0	<	x	<	1)		that	serves	as	the	upper	bound	of	the	segment	range	where	the	new	
point	will	lie	on	the	line	segment	

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	If	any	of	the	objects	selected	by	the	funcFon	are	not	straight	curves	(line	segments)	

▪ ValueError:	If	either	‘seg1’	(lower	bound)	or	‘seg2’	(upper	bound)	are	not	float	data	types	within	the	
range	(0	<	x	<	1)	

Example

rm.add_point_on_line(0.1)

� 	46

add_shortest_line

Adds	shortest-line	predicate	tag	to	line	segment/s.	This	is	indicated	as	‘shortest	within	predicates	text	('#()')	in	
the	visual	text	dot	assigned	to	geometry.	

Syntax

rm.add_shortest_line(tagSelf = True)

Parameters

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	If	any	of	the	objects	selected	by	the	funcFon	are	not	straight	curves	(line	segments)	

Example

rm.add_shortest_line()

The	user	is	then	prompted	to	select	which	Rhino	objects	to	add	the	predicate	tag	to.	

add_void

Adds	void	predicate	tag	to	collecFon	of	points/text	dots/line	segments/plane	segments	that	form	a	closed	
polygon.	The	user	is	prompted	to	select	the	geometry	that	will	compose	the	void	area.	This	may	be	composed	
of	points,	line	segments	or	a	plane	segment	(mesh,	BREP,	surface).	This	is	indicated	as	'void'	within	predicates	
text	('#()'),	and	indicates	which	void	group	it	belongs	in	the	visual	text	dot	assigned	to	the	geometry.	

Syntax

rm.add_void(sortType = [], detectIntersection = False)

Parameters

▪ sortType:	List	of	text	strings,	where	each	element	is	the	name	of	a	sort	type	that	should	not	be	present	
inside	the	area	delineated	by	the	void	coordinates	

▪ detectIntersecFon:	Boolean	value;	True	–	checks	if	geometry	given	as	input	for	void	coordinates	is	self-
intersecFng	and	does	not	proceed	with	adding	void	predicate	tag	to	geometry	if	yes;	False	–	does	not	
check	if	input	geometry	is	self-intersecFng	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

� 	47

Warnings & Errors

▪ ValueError:		

o If	a	sort	type	listed	in	the	input	‘sortType’		

▪ TypeError:		

o If	the	input	for	‘sortType’	is	not	a	text	string	or	a	list	of	text	strings	

▪ Warning:	

o If	no	geometry	was	selected	

o If	the	selected	geometry	were	all	points	and	do	not	form	a	polygon	(at	least	a	triangle)	or	
there	are	not	enough	points	to	form	a	polygon	(at	least	three	non-collinear	points	are	
required)	

o If	the	selected	geometry	were	all	line	segments	and	there	are	not	enough	line	segments	to	
form	a	polygon	(at	least	three	non-collinear	line	segments	are	required)	

o If	detectIntersecFon	is	True,	then	if	any	of	the	lines	intersect	one	another	

Example

rm.add_void([‘lineSegment-A3D’, ‘point-V3D’])

This	means	that	the	area	of	the	polygon	delineated	by	the	void	coordinates	as	verFces	cannot	have	any	
individuals	with	the	sort	type	‘lineSegment-A3D’	or	‘point-V3D’	inside.	

add_weight

Adds	width	(weight)	to	line	or	grayscale	(weight255)	to	point	or	text	dot	in	the	visual	text	dot	assigned	to	
geometry.	If	several	objects	are	selected,	then	the	funcFon	goes	through	each	object	in	the	list	of	Rhino	GUIDs	
and	highlights	them	with	yellow,	to	help	the	user	recognize	which	Rhino	object	is	currently	being	altered.	The	
user	is	prompted	for	the	target	weight	(either	line	width,	if	the	Rhino	object	is	a	line	segment,	or	gray	scale,	if	
the	Rhino	object	is	a	point	or	a	text	dot)	

Syntax

rm.add_weight(several = True)

Parameters

▪ several:	Boolean	value:	True	(default)	–	the	user	may	select	several	objects	to	add	a	weight	a6ribute	
to;	False	–	the	user	may	select	only	one	object	to	add	a	weight	a6ribute	to	

Returns

▪ True:	If	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	

o If	input	for	intended	line	width	is	not	within	the	range	0.0	(mm)	to	2.0	(mm)	or	is	not	a	float	
data	type	

o If	input	for	intended	gray	scale	value	(for	points	and	text	dots)	is	not	within	the	range	0	to	255	
or	is	not	a	posiFve	integer	

� 	48

▪ Warning:	

o If	no	geometry	was	selected	

Example

rm.add_weight()

The	user	will	then	be	prompted	to	select	the	objects	whose	line	width	or	color	will	be	altered.	If	several	objects	
are	selected,	the	funcFon	goes	through	them	one	by	one,	highlighFng	the	object	in	quesFon	in	yellow	and	
prompFng	the	user	for	the	desired	line	width	or	gray	scale	value.	Once	the	object	has	been	altered,	it	is	
reverted	to	its	original	color,	if	it	is	a	line	segment.

analysis

Analyzes	a	list	of	Rhino	GUIDs	and	moves	points/extends	lines	to	intersect	directly	with	each	other	(for	lines	to	
intersect	with	each	other,	for	points	to	line	on	lines)	in	the	visual	text	dot	assigned	to	geometry.	The	precision	
value	is	x	<	1%	of	the	length	of	the	line	or	Rhino's	unit	seLng.	The	GUIDs	in	the	list	are	modified	to	fit	more	
accurately	with	each	other	(points	lying	on	lines,	line	segment	intersecFon	with	other	line	segments).	

Syntax

rm.analysis(objects)

Parameters

▪ objects:	List	of	Rhino	GUIDs	to	be	analyzed	

Returns

▪ objects:	List	of	Rhino	GUIDs	a_er	modificaFon,	if	successful	

▪ False:	If	number	of	Rhino	GUIDs	is	less	than	two	(2)	

Warnings & Errors

▪ Warning:	if	number	of	Rhino	GUIDs	in	input	list	is	less	than	two	(2)	

Example

shape = rs.GetObjects()

shape_modified = rm.analysis(shape)

clear_shape

Clears	a	list	of	Rhino	objects.	This	method	takes	as	input	a	list/dicFonary/tuple	of	Rhino	GUIDs	or	a	single	Rhino	
GUID	and	deletes	it	from	the	Rhino	workspace.		

Syntax

rm.clear_shape(guids)

Parameters

▪ guids:	List	of	Rhino	GUIDs	to	be	deleted	from	workspace	

� 	49

Returns

▪ True:	If	Rhino	GUID/s	is/are	successfully	deleted	from	viewport	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ TypeError:	If	input	is	not	a	list/tuple/dicFonary	or	a	single	Rhino	GUID	

▪ Warning:	If	no	objects	were	selected	

Example

shape = rs.GetObjects(‘Select shapes to clear from Rhino viewport’)

rm.clear_shape(shape)

delete_descrip9on

Removes	descripFon	data	from	the	UserText	of	the	Rhino	Object	and	from	the	visual	text	dot	assigned	to	
geometry,	if	any	are	present.	The	user	is	first	prompted	for	the	object/s	to	remove	descripFons	from.	
A_erwards,	the	funcFon	goes	through	every	object	and	displays	what	descripFons	are	currently	present	in	the	
UserText	of	the	object.	The	user	is	then	prompted	for	an	integer	input	corresponding	to	the	descripFon	data	
they	wish	to	remove.	If	the	Rhino	Object	is	a	text	dot	and	no	text	is	le_	in	the	UserText	a_er	the	removal	of	the	
label,	the	text	dot	is	changed	to	a	point.	

Syntax

rm.delete_description()

Parameters

▪ None	

Returns

▪ True:	if	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ ValueError:	If	the	input	number	given	by	the	user	does	not	correspond	to	any	descripFon	displayed	by	
the	funcFon	

▪ TypeError:		

o If	any	object	in	the	inpu6ed	list	is	not	a	point,	text	dot,	curve,	BREP,	surface	or	mesh		

o If	the	input	for	which	predicate/direcFve	data	to	remove	is	not	an	integer	

▪ Warning:	If	no	objects	were	selected	

Example

rm.delete_description()

The	funcFon	then	displays	which	descripFons	are	currently	present	in	the	Rhino	object	and	prompts	the	user	to	
enter	an	integer	value	corresponding	to	the	descripFon	they	wish	to	remove	from	the	UserText	of	the	Rhino	
GUID.	

� 	50

delete_label

Removes	label	data	from	the	UserText	of	the	Rhino	Object	and	from	the	visual	text	dot	assigned	to	geometry,	if	
any	are	present.	The	user	is	first	prompted	for	the	object/s	to	remove	labels	from.	A_erwards,	the	funcFon	
goes	through	every	object	and	displays	what	labels	are	currently	present	in	the	UserText	of	the	object.	The	user	
is	then	prompted	for	an	integer	input	corresponding	to	the	label	data	they	wish	to	remove.	If	the	Rhino	Object	
is	a	text	dot	and	no	text	is	le_	in	the	UserText	a_er	the	removal	of	the	label,	the	text	dot	is	changed	to	a	point.	

Syntax

rm.delete_label()

Parameters

▪ None	

Returns

▪ True:	if	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ ValueError:	If	the	input	number	given	by	the	user	does	not	correspond	to	any	label	displayed	by	the	
funcFon	

▪ TypeError:		

o If	any	object	in	the	inpu6ed	list	is	not	a	point,	text	dot,	curve,	BREP,	surface	or	mesh		

o If	the	input	for	which	predicate/direcFve	data	to	remove	is	not	an	integer	

▪ Warning:	If	no	objects	were	selected	

Example

rm.delete_label()

The	funcFon	then	displays	which	labels	are	currently	present	in	the	Rhino	object	and	prompts	the	user	to	enter	
an	integer	value	corresponding	to	the	label	they	wish	to	remove	from	the	UserText	of	the	Rhino	GUID.	

delete_pred_dir

Removes	predicate/direcFve	data	from	the	UserText	of	the	Rhino	Object	and	from	the	visual	text	dot	assigned	
to	geometry,	if	any	are	present.	The	user	is	first	prompted	for	the	object/s	to	remove	predicates/direcFves	
from.	A_erwards,	the	funcFon	goes	through	every	object	and	displays	what	predicates/direcFves	are	currently	
present	in	the	UserText	of	the	object.	The	user	is	then	prompted	for	an	integer	input	corresponding	to	the	
predicate/direcFve	data	they	wish	to	remove.	If	the	Rhino	Object	is	a	text	dot	and	no	text	is	le_	in	the	UserText	
a_er	the	removal	of	the	label,	the	text	dot	is	changed	to	a	point.	

Syntax

rm.delete_pred_dir()

Parameters

▪ None	

� 	51

Returns

▪ True:	if	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ ValueError:	If	the	input	number	given	by	the	user	does	not	correspond	to	any	label	displayed	by	the	
funcFon	

▪ TypeError:		

o If	any	object	in	the	inpu6ed	list	is	not	a	point,	text	dot,	curve,	BREP,	surface	or	mesh		

o If	the	input	for	which	predicate/direcFve	data	to	remove	is	not	an	integer	

▪ Warning:	If	no	objects	were	selected	

Example

rm.delete_pred_dir()

The	funcFon	then	displays	which	predicates/direcFves	are	currently	present	in	the	Rhino	object	and	prompts	
the	user	to	enter	an	integer	value	corresponding	to	the	label	they	wish	to	remove	from	the	UserText	of	the	
Rhino	GUID.	

delete_tag

Removes	geometry	tag	(usually	encased	inside	‘line()’,	‘point()’,	or	‘plane()’)	from	Rhino	Object	and	from	the	
visual	text	dot	assigned	to	the	object,	if	any	are	present.	The	user	is	prompted	for	the	object/s	to	remove	tags	
from,	and	the	tag	is	removed	from	both	the	visual	text	dot	of	the	Rhino	Object	as	well	as	its	UserText	data.	If	
the	Rhino	Object	is	a	text	dot	and	no	text	is	le_	in	the	UserText	a_er	the	removal	of	the	label,	the	text	dot	is	
changed	to	a	point.	

Syntax

rm.delete_tag()

Parameters

▪ None	

Returns

▪ True:	if	successful	

▪ False:	If	no	objects	were	selected	

Warnings & Errors

▪ Warning:		
o If	no	objects	were	selected	

o If	the	object	does	not	have	any	‘tag’	key	in	its	UserText	dicFonary	

Example

rm.delete_tag()

The	user	is	then	prompted	to	select	objects	to	remove	tags	from.

� 	52

clear_everything

Deletes	all	Rhino	objects	in	Rhino	workspace,	and	clears	all	registers	(sort,	rule,	flow,	form,	sdlParser.forms,	
sdlParser.flows,	sdlParser.rules)	in	the	back-end.	

Syntax

rm.clear_everything()

Parameters

▪ None	

Returns

▪ True:	if	successful	

Warnings & Errors

▪ None	

Example

rm.clear_everything()

tag

Adds	a	tag	to	a	Rhino	object	or	changes	the	tag	stored	in	a	Rhino	object	and	changes	the	visual	text	dot	
assigned	to	the	Rhino	object	accordingly.	Data	within	the	Rhino	object’s	user	text	pertaining	to	the	direcFve	
‘normal’,	and	that	is	reliant	on	the	tag	of	the	Rhino	object,	are	also	changed.	

Syntax

sgi.tag()

Parameters

▪ tagSelf:	Boolean	value;	True	(default)	–	user	may	input	the	desired	tag	name	for	the	selected	
geometry;	False	–	method	will	generate	the	tag	name	for	the	selected	geometry	based	on	the	
currently	value	inside	sc.sFcky[‘keyCount’]	

Returns

▪ True:	if	successful	

Warnings & Errors

▪ None	

Example

sgi.tag()

The	user	is	then	prompted	to	select	objects	whose	tags	they	wish	to	change	or	remove.	If	no	input	is	given	
when	the	user	is	prompted	to	enter	the	new	tag	of	a	Rhino	object,	then	the	tag	data	item	is	deleted	completely	
from	the	Rhino	object.	

� 	53

� 	54

FAQ

1. 	I	get	empty	sortal	shapes	whenever	I	use	func9ons	like	‘create_shape’	or	‘create_shape_ag’.	What	do	I	do?	

There	are	two	opFons	you	may	do	in	this	case.	The	first	one	is	to	rerun	your	code	by	using	the	‘Reset	and	
Debug’	opFon	in	the	Rhino	Python	compiler,	pictured	below	in	the	orange	box:	

	

� 	

The	second	opFon	is	to	shut	down	Rhinoceros	completely,	re-open	the	Rhino	and	Python	files,	and	rerun	your	
code.	

2. The	edges	of	some	of	my	line	segments	do	not	meet	each	other	or	I	have	generated	shapes	where	the	
points	do	not	exactly	lie	on	the	lines.	How	can	I	fix	this?	

Due	to	the	nature	of	Rhinoceros,	the	dimensions	of	the	last	few	digits	of	its	measurements	may	fluctuate	and	
thus	affect	computaFons	in	the	Sortal	Library,	since	the	back-end	precision	is	fixed.	You	may	change	the	
precision	of	comparison	(the	number	of	decimal	places	the	back-end	will	consider	when	performing	operaFons)	
using	‘set_precision’.	AlternaFvely,	you	may	set	the	dimension	of	your	Rhinoceros	applicaFon	to	a	larger	base	
dimension	(e.g.	cm	instead	of	mm).	

3. Can	I	get	some	help?	

You	can	post	a	message	on	the	SortalGI	forum	(h6p://sortal.org/feedback/)	or	e-mail	stouffs@sortal.org.	

� 	55

http://sortal.org/feedback/
mailto:stouffs@sortal.org

Annex A: About Sortal Structures

This	annex	explains	about	sortal	structures,	or	sorts,	the	various	types	of	sorts,	the	various	behavioral	
categories	and	provides	an	overview	of	all	data	types	or	characterisFc	individuals	that	exist	to	define	sorts.	

Sortal structures and behavioral categories

Sortal	structures,	also	denoted	as	sorts,	are	representaFonal	structures	defined	as	formal	composiFons	of	
other,	primiFve,	sortal	structures.	While	the	terms	sortal	structures	and	sorts	may	be	used	interchangeably,	the	
term	sortal	structure	emphasizes	the	formal	composiFonal	character	of	the	representaFonal	structure,	while	
the	term	sort	refers	to	the	universe	of	enFFes	(called	individuals)	as	represented	by	the	structure.	

• Sortal	structures	are	class	structures,	specifying	either	a	single	data	type	or	a	composiFon	of	other	
class	structures.	For	instance,	data	types	such	as	points,	labels,	and	lines	all	define	sorts.	

• A	sortal	structure	can	also	be	considered	as	a	hierarchical	structure	of	properFes,	where	each	property	
specifies	a	data	type	(a	primi9ve	sort).	ProperFes	can	be	collected	(a	disjunc9ve	sort)	and	a	collecFon	
of	one	or	more	properFes	can	be	assigned	as	an	a6ribute	to	another	property	(an	aIribute	sort).	

• A	sortal	descrip6on	is	a	descripFon	of	a	data	construct,	corresponding	to	a	sortal	structure,	and	
expressed	as	an	individual	or	form	(or	metaform)	of	a	sort.	

• An	Individual	is	the	basic	element	of	a	sort,	that	is,	an	instance	of	the	class	structure.	For	example,	a	
point	is	an	individual	of	the	sort	of	points.	Every	sort	also	allows	for	a	nil	value	or	individual.	When	
taking	the	complement	of	an	individual	with	respect	to	another	individual,	or	determining	the	
common	part	of	two	individuals,	the	result	may	be	empty	or	nil.	

• A	form	is	a	collecFon	of	individuals	of	the	same	sort,	e.g.,	a	set	of	points.	

• A	metaform	is	a	collecFon	of	forms	corresponding	to	the	different	component	sorts	of	a	disjunc9ve	
sort,	e.g.,	a	set	of	points	and	line	segments.	

We	disFnguish	four	types	of	sorts:	primi9ve	sorts,	aIribute	sorts,	disjunc9ve	sorts,	and	compound	sorts.	

• A	primi6ve	sort	specifies	a	single	data	type.	An	individual	of	a	primiFve	sort	has	a	data	value	of	the	
specified	type.	

• An	aAribute	sort	is	a	subordinate,	semi-conjuncFve	composiFon	of	a	primiFve	sort	(its	base)	with	any	
other	sort	(its	weight)	under	the	object-a6ribute	relaFonship.	An	individual	of	an	a6ribute	sort	is	an	
individual	of	the	base	sort	(the	associate	individual)	that	is	assigned	a	form	(a	collecFon	of	zero,	one	or	
more	individuals)	of	the	weight	sort	as	an	a6ribute	(the	aIribute	form).	If	the	a6ribute	form	is	empty,	
it	may	be	omi6ed	and	the	individual	is	treated	as	an	individual	of	the	base	sort	only,	rather	than	of	the	
a6ribute	sort.	

• A	disjunc6ve	sort	is	a	co-ordinate,	disjuncFve	composiFon	of	any	number	of	sorts.	A	form	of	a	
disjuncFve	sort	is	a	composiFon	of	forms	from	the	respecFve	component	sorts,	and	is	called	a	
metaform.	The	representaFon	of	each	component	sort	in	the	composiFon	of	forms	is	opFonal.	

• A	compound	sort	is	a	co-ordinate,	disjuncFve	composiFon	of	(disjuncFve)	sorts.	The	disFncFon	
between	disjuncFve	and	compound	sorts	recognizes	the	fact	that	a	single	sortal	structure	may	be	
adopted	to	represent	a	collecFon	of	‘drawings’.		Where	the	compound	sort	represents	the	collecFon	of	
drawings,	each	(disjuncFve)	component	sort	represents	a	single	drawing.	In	the	case	of	shape	
matching	for	rule	applicaFon,	shape	elements	from	the	same	component	sort	match	under	the	same	
transformaFon,	while	shapes	from	different	component	sorts	match	under	separate	transformaFons.	

� 	56

Each	sort	may	be	specified	a	name,	for	the	purpose	of	semanFc	disambiguaFon.	This	is	a	requirement	for	every	
primiFve	sort	(or	aspect).	

Each	primiFve	sort	is	defined	by	its	characteris9c	individual	and	its	behavioral	category.	In	addiFon,	the	
definiFon	of	a	primiFve	sort	may	include	one	or	more	arguments,	constraining	the	possible	data	enFFes	this	
sort	may	represent.	For	example,	the	definiFon	of	a	sort	of	weights	may	include	the	specificaFon	of	an	upper	
bound	for	the	numeric	weight	values	as	argument.	

• The	characteris6c	individual	defines	the	representaFonal	aspect	of	a	primiFve	sort,	specifically,	the	
representaFon	of	its	individuals'	data	values	and	behavioral	methods.	It	is	specified	in	its	class	
implementaFon.	Examples	of	characterisFc	individuals	are	points,	line	segments	and	labels.		

• The	behavioral	category	of	a	primiFve	sort	specifies	the	operaFonal	behavior	of	its	forms	and	is	
assigned	in	a	categorizaFon	of	the	characterisFc	individuals.	Specifically,	the	behavioral	category	
prescribes	the	behavior	of	forms	under	common	arithmeFc	operaFons	(sum,	difference	and	product/
intersecFon),	their	canonical	(maximal)	form,	and	when	a	form	is	part	of	another	form.	

The	behavior	(of	forms)	of	a	composite	sort	(whether	an	a6ribute	or	a	disjuncFve	sort)	derives	from	the	
behavior	of	its	component	sorts	depending	on	the	composiFonal	relaFonship.	

We	disFnguish	six	behaviors	for	primiFve	sorts:	discrete,	ordinal,	interval,	cyclical,	areal	and	custom,	and	their	
respecFve	forms.	

• A	discrete	form	is	a	form	with	a	discrete	operaFonal	behavior,	corresponding	to	a	mathemaFcal	set:	an	
individual	is	part	of	another	individual,	only	if	these	are	idenFcal;	a	form	is	part	of	another	form,	if	
every	individual	of	the	first	form	is	also	an	individual	of	the	second	form.	The	operaFons	of	sum,	
difference	and	product	on	forms	correspond	to	set	union,	difference	and	intersecFon,	respecFvely:	
under	the	operaFon	of	sum,	forms	are	merged	and	duplicate	individuals	are	removed;	under	the	
operaFon	of	product,	only	idenFcal	individuals	contribute	to	the	result.	A	discrete	form	is	maximal	if	
no	two	individuals	are	idenFcal.  
In	other	words,	if	x	and	y	denote	two	forms	of	a	sort	with	discrete	behavior,	and	X	and	Y	denote	the	
respecFve	sets	of	individuals,	then	(x	:	X	specifies	X	as	a	representaFon	of	x)  
x	:	X	∧	y	:	Y			⇒ x	≤	y	⇔	X	⊆	Y  
 x	+	y		:		X	∪	Y  
 x	−	y		:		X		⁄	Y  
 x	·	y		:		X	∩	Y  
In	the	case	of	an	a6ribute	sort,	an	individual	is	part	of	another	individual,	only	if	these	are	idenFcal	
and	the	former's	a6ribute	form	is	part	of	the	la6er's	a6ribute	form.	Under	the	operaFon	of	sum,	
idenFcal	individuals	have	their	a6ribute	forms	combined	under	the	(corresponding)	operaFon	of	sum.	
Under	the	operaFon	of	product,	only	idenFcal	individuals	contribute	to	the	result;	their	a6ribute	forms	
combine	under	the	(corresponding)	operaFon	of	product.	The	resulFng	a6ribute	form	may	be	empty.	

• An	ordinal	form	is	a	form	with	an	ordinal	operaFonal	behavior:	an	individual	is	part	of	another	
individual,	only	if	its	ordinal	value	is	smaller	than	or	equal	to	the	la6er's	ordinal	value.	Since,	for	any	
two	ordinal	values,	one	is	always	less	than	or	equal	to	the	other,	an	ordinal	form	is	maximal	if	it	
contains	only	a	single	individual.	Thus,	a	form	is	part	of	another	form,	if	the	former's	individual	is	part	
of	the	la6er's	individual.	Under	the	operaFons	of	sum	and	product,	the	resulFng	form's	individual	has	
as	ordinal	value	the	largest	and,	respecFvely,	smallest	of	both	ordinal	values. 
Two	variant	ordinal	forms	are	disFnguished	from	the	operaFon	of	difference.	In	both	variants,	the	
difference	of	a	smaller	ordinal	value	with	respect	to	a	larger	or	equal	ordinal	value	is	nil.	In	variant	1,	
the	difference	of	a	larger	ordinal	value	with	respect	to	a	smaller	ordinal	value	is	the	larger	ordinal	
value,	whereas	in	variant	2,	it	is	the	numeric	difference	of	the	two	ordinal	values. 
x	:	{m}	∧	y	:	{n}	⇒ x	≤	y	⇔	m	≤	n  

� 	57

 x	+	y		:		{max(m,	n)}  
 x	−	y		:		 {}	if	m	≤	n,	else	{m}	1 
 {}	if	m	≤	n,	else	{m	–	n}	2 
 x	·	y		:		{min(m,	n)}  
In	the	case	of	an	a6ribute	sort,	an	individual	is	part	of	another	individual,	if	its	ordinal	value	is	smaller	
than	or	equal	to	the	la6er's	ordinal	value	and	its	a6ribute	form	is	part	of	the	la6er's	a6ribute	forms.	
Under	the	operaFons	of	sum	and	product,	the	resulFng	form's	individual	has	as	ordinal	value	the	
largest	and,	respecFvely,	smallest	of	both	ordinal	values,	while	its	a6ribute	form	is	the	result	of	the	
respecFve	operaFon	on	both	a6ribute	forms.	

• An	interval	form	is	a	form	with	a	one-dimensional	embedding	operaFonal	behavior:	an	interval	is	part	
of	another	interval	if	it	is	embedded	in	the	other	interval;	a	form	is	part	of	another	form	if	every	
interval	in	the	first	form	is	embedded	in	an	interval	in	the	second	form.	Under	the	operaFon	of	sum,	
forms	are	merged	and	adjacent	(on	the	same	carrier)	or	overlapping	intervals	are	combined	into	a	
single	interval;	under	the	operaFon	of	product,	the	result	is	composed	of	the	common	parts	of	
overlapping	intervals.	An	interval	form	is	maximal	if	no	two	intervals	are	adjacent	(on	the	same	carrier)	
or	overlap.  
Let	B[x]	denote	the	set	of	boundary	elements	of	a	form	x	of	intervals	and,	given	two	interval	forms	x	
and	y	of	the	same	sort,	let	Ix	denote	the	set	of	boundary	elements	of	x	that	lie	within	y,	Ox	the	set	of	
boundary	elements	of	x	that	lie	outside	of	y,	M	the	set	of	boundary	elements	of	both	x	and	y	where	
the	respecFve	intervals	lie	on	the	same	side	of	the	boundary	element,	and	N	the	set	of	boundary	
elements	of	both	x	and	y	where	the	respecFve	intervals	
lie	on	opposite	sides	of	the	boundary	element;	then  
x	:	B[x]	∧	y	:	B[y]			⇒ x	≤	y	⇔	Ix	=	∅	∧	Oy	=	∅	∧	N	=	∅ 
 x	+	y		:		B[x	+	y]	=	Ox	∪	Oy	∪	M 
 x	−	y		:		B[x	−	y]	=	Ox	∪	Iy	∪	N 
 x	·	y		:		B[x	·	y]	=	Ix	∪	Iy	∪	M 
In	the	case	of	an	a6ribute	sort,	an	interval	is	part	of	another	interval	if	it	is	embedded	in	the	other	
interval	and	the	former's	a6ribute	form	is	part	of	the	la6er's	a6ribute	form.	Under	the	operaFon	of	
sum,	overlapping	intervals	are	split	at	the	mutual	boundary	points	and	idenFcal	parts	are	combined	
into	one,	with	the	a6ribute	forms	combined	under	the	(corresponding)	operaFon	of	sum.	Adjacent	
intervals	(on	the	same	carrier)	that	have	idenFcal	a6ribute	forms	are	also	combined.	Under	the	
operaFon	of	product,	the	result	is	composed	of	the	common	parts	of	overlapping	intervals,	with	the	
a6ribute	forms	combined	under	the	(corresponding)	operaFon	of	product.	The	resulFng	a6ribute	form	
may	be	empty.	An	interval	form	is	maximal	if	no	two	intervals	overlap	and	if	adjacent	intervals	(on	the	
same	carrier)	have	non-idenFcal	a6ribute	forms.	

• A	cyclical	form	is	a	form	with	a	one-dimensional	cyclical	embedding	operaFonal	behavior.	This	
behavior	is	quasi-idenFcal	to	the	one-dimensional	embedding	operaFonal	behavior	for	interval	forms	
as	described	above,	except	that	for	an	interval	form,	all	intervals	can	be	ordered	based	on	the	starFng	
point	of	the	interval	in	order	to	simplify	the	process	of	idenFfying	adjacent	and	overlapping	intervals.	
In	the	case	of	the	cyclical	embedding	operaFonal	behavior,	such	ordering	must	necessarily	take	into	
account	that	the	first	and	last	intervals	may	also	be	adjacent	or	overlap.	

• An	areal	form	is	a	form	with	a	two-or-higher-dimensional	embedding	operaFonal	behavior.	An	areal	
form	behaves	similar	to	an	interval	form:	an	areal	is	part	of	another	areal	if	it	is	embedded	in	the	other	
areal.	Under	the	operaFon	of	sum,	forms	are	merged	and	areals	that	overlap	or	share	boundary	(on	
the	same	carrier)	are	combined	into	a	single	areal.	An	areal	form	is	maximal	if	no	two	areals	overlap	or	
share	boundary	(on	the	same	carrier).  
Let	B[x]	denote	the	form	of	boundary	segments	of	a	form	x	of	areals	(e.g.,	if	x	is	a	form	of	plane	

� 	58

segments,	B[x]	will	be	a	form	of	line	segments)	and,	given	two	areal	forms	x	and	y	of	the	same	sort,	let	
Ix	denote	the	form	of	boundary	segments	of	x	that	lie	within	y,	Ox	denote	the	form	of	boundary	
segments	of	x	that	lie	outside	of	y,	M	the	form	of	boundary	segments	of	both	x	and	y	where	the	
respecFve	areals	lie	on	the	same	side	of	the	boundary	segment,	and	N	the	form	of	boundary	segments	
of	both	x	and	y	where	the	respecFve	areals	lie	on	opposite	sides	of	the	boundary	segment;	then	 
x	:	B[x]	∧	y	:	B[y]			⇒ x	≤	y	⇔	Ix	=	0	∧	Oy	=	0	∧	N	=	0 
 x	+	y		:		B[x	+	y]	=	Ox	+	Oy	+	M 
 x	−	y		:		B[x	−	y]	=	Ox	+	Iy	+	N 
 x	·	y		:		B[x	·	y]	=	Ix	+	Iy	+	M 
In	the	case	of	an	a6ribute	sort,	an	areal	is	part	of	another	areal	if	it	is	embedded	in	the	other	areal	and	
the	former's	a6ribute	form	is	part	of	the	la6er's	a6ribute	form.	Under	the	operaFon	of	sum,	
overlapping	areals	are	split	at	their	mutual	boundaries	and	idenFcal	parts	are	combined	into	one,	with	
the	a6ribute	forms	combined	under	the	(corresponding)	operaFon	of	sum.	Areals	that	share	boundary	
(on	the	same	carrier)	and	have	idenFcal	a6ribute	forms	are	also	combined.	An	areal	form	is	maximal	if	
no	two	areals	overlap	and	if	areals	that	share	boundary	(on	the	same	carrier)	have	non-idenFcal	
a6ribute	forms.	

• A	color	form	is	a	form	with	a	custom,	ordinal-like	behavior.	The	specificaFon	of	a	color	sort	requires	
the	specific	behavior	to	be	specified,	i.e.,	whether	the	sum	of	two	color	values	is	the	average	RGB	
value,	the	maximum	RGB	value,	the	sum	of	the	RGB	values,	or	defined	as	a	funcFon	of	the	respecFve	
alpha	values.	

• An	enumera6ve	form	is	a	form	with	a	custom,	ordinal-like	behavior.	An	enumeraFve	value	is	a	value	
from	among	an	enumerated	set.	The	specificaFon	of	an	enumeraFve	sort	requires	the	enumeraFon	of	
the	values	as	well	as	their	mutual	ranking.	The	enumeraFon	values	are	specified	as	a	set	of	idenFfiers,	
and	their	ranking	as	an	array	of	enumeraFon	values	resulFng	from	the	addiFon	of	every	combinaFon	
of	two	values	(ordered	as	a	matrix,	corresponding	the	original	enumeraFon	ordering).	For	instance,	
given	an	enumeraFon	of	black	and	white	(in	that	order),	a	ranking	array	of	black,	black,	black	and	
white	would	mean	black	dominates	white	as	any	addiFon	of	two	values,	except	for	white	and	white,	
results	in	black.	The	product	of	two	enumeraFve	values	is	always	nil,	unless	the	two	enumeraFve	
values	are	idenFcal.	An	enumeraFve	sort	supports	the	specificaFon	of	qualitaFve	aspects	in	"color	
grammars"	(Knight	1989;	1993).	

Data types and characteris9c individuals

The	table	below	specifies	all	characterisFc	individuals	available	in	the	Python	sortal	library.	Geometric	types	can	
be	specified	within	a	two-dimensional	or	three-dimensional	space;	their	characterisFc	individuals	are	also	
disFnguished	in	the	context	of	parametric	and	non-parametric	rules	(e.g.,	point3D	versus	pointP3D).	Do	note	
that	not	all		characterisFc	individuals	are	available	through	the	SortalGI	API.	

SortalGI Data type Space Characteristic
individual

Behavior/form

✓ points 2D point2D discrete

pointP2D

3D point3D

pointP3D

lines
– unbounded

2D line2D discrete

� 	59

– unbounded
3D line3D

✓ line segments
– bounded and half-bounded

2D lineSegment2D interval

lineSegmentP2D

3D lineSegment3D

lineSegmentP3D

planes
– unbounded

2D plane2D discrete

3D plane3D

✓ plane segments
– bounded, rectilinear

2D planeSegment2D areal

planeSegmentP2D

3D planeSegment3D

planesegmentP3D

✓ circles
– closed, planar

2D circle2D discrete

circleP2D

3D circle3D

circleP3D

✓ circular arcs
– planar

2D circularArc2D cyclical

3D circularArc3D

✓ ellipses
– closed, planar

2D ellipse2D discrete

ellipseP2D

3D ellipse3D

ellipseP3D

✓ elliptical arcs
– planar

2D ellipticalArc2D cyclical

3D ellipticalArc3D

✓ Bezier curves
– quadratic

2D bezier2D interval

bezierP2D

3D bezier3D

bezierP3D

✓ labels
– alphanumeric

label discrete

✓ numeric values numeric discrete

✓ weights
– non-negative, numeric

weight ordinal1

rWeight ordinal2

✓ enumerated values enumerative custom

✓ color values
– RGB or HSV

color custom

✓ shape descriptions description discrete

� 	60

Annex B: About Shape Rules and Descrip9on Rules

This	annex	explains	about	shape	rules	and	descripFon	rules.	

A	rule	is	conceptually	specified	in	the	form	lhs	→	rhs,	where	the	le_-hand-side	(lhs)	of	the	rule	specifies	the	
pa6ern	to	be	matched	under	some	transformaFon	and	the	right-hand-side	(rhs)	specifies	the	resulFng	pa6ern	
that	replaces	the	matched	pa6ern	under	the	same	transformaFon.	That	is,	applying	a	rule	a	→	b	to	a	given	
shape	s	involves	determining	a	transformaFon	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	which	s	is	
replaced	by	s	–	f(a)	+	f(b).	

A	shape	rule	is	commonly	understood	to	imply	that	both	lhs	and	rhs	consFtute	a	geometry,	possibly	including	
non-geometric	a6ributes,	e.g.,	labels	or	descripFons.	A	descripFon	rule,	then,	implies	that	both	lhs	and	rhs	
consFtute	a	shape	descripFon	of	the	same	shape	descripFon	type.	Combining	a	shape	rule	with	one	or	more	
descripFon	rules	specifies	a	compound	rule,	where	the	different	component	rules	operate	in	parallel,	although	
they	may	interact	with	each	other.	

Shape rules

Two	types	of	rules	are	disFnguished,	parametric	rules	and	non-parametric	rules.	The	la6er	are	the	easiest	to	
understand.	In	the	case	of	a	non-parametric	rule,	the	pa6ern	specified	by	the	lhs	of	the	rule	must	match	a	part	
of	the	given	shape	under	a	similarity	transformaFon	(translaFon,	rotaFon,	reflecFon	and/or	uniform	scaling).	
That	is,	when	matching	for	a	square	of	line	segments,	any	square	of	line	segments	from	the	given	shape	will	do,	
even	if	these	line	segments	extend	beyond	the	corner	points	of	the	square.	The	same	applies	when	matching	
for	a	rectangle,	however,	only	rectangles	with	the	same	raFo	between	length	and	width	will	be	matched.	

A	parametric	rule	matches	a	much	larger	variety	of	shapes.	In	principle,	when	matching	a	triangle	of	line	
segments,	any	triangle	of	line	segments	in	the	given	shape	will	be	matched,	irrespecFve	of	its	shape.	The	
corresponding	transformaFon	is	a	topological	transformaFon	though	there	is	no	mathemaFcal	representaFon	
for	such	a	transformaFon	(unlike	for	a	similarity	transformaFon).	However,	some	constraints	do	apply.	
Specifically,	parallel	and	perpendicular	lines	are	automaFcally	idenFfied	in	the	lhs	and	considered	as	constraints	
for	matching.	Thus,	specifying	a	right-angled	triangle	as	the	lhs	will	only	match	right-angled	triangles	in	the	
given	shape,	however,	specifying	an	equilateral	or	isosceles	triangle	as	the	lhs	will	have	no	effect,	any	triangle	in	
the	given	shape	will	be	matched.	

While	in	some	cases	it	may	be	difficult	to	predict	the	exact	matching	results	of	the	lhs	of	a	parametric	rule,	the	
matching	mechanism	broadly	follows	the	following	steps:	

1. IdenFfy	all	(infinite)	lines	that	carry	any	line	segment	in	the	lhs.	
2. IdenFfy	all	(infinite)	lines	that	carry	any	line	segments	in	the	given	shape.	
3. Enumerate	all	combinaFons	of	lines	from	the	given	shape	that	match	the	number	of	lines	for	the	lhs.	
4. Eliminate	all	combinaFons	that	do	not	preserve	parallelism	and	perpendicularity	between	lines	as	

specified	by	the	lhs.	
5. IdenFfy	all	intersecFon	points	of	(infinite)	lines	in	the	lhs	and	note	whether	the	intersecFon	point	falls	

inside,	outside	or	is	an	endpoint	of	any	line	segment	on	each	infinite	line.	
6. Do	the	same	for	the	remaining	combinaFons	of	(infinite)	lines	for	the	given	shape:	

a. Eliminate	any	combinaFons	where	an	inside	intersecFon	point	for	the	lhs	is	not	matched	with	
an	inside	intersecFon	point	for	the	given	shape.	

b. Eliminate	any	combinaFons	where	an	intersecFon	point	that	is	an	endpoint	for	the	lhs	is	not	
matched	with	an	intersecFon	point	that	is	either	an	endpoint	or	an	inside	point	for	the	given	
shape.	

� 	61

7. For	the	lhs,	IdenFfy	all	endpoints	of	line	segments	on	these	(infinite)	lines	and	note	their	ordering	also	
with	respect	to	the	intersecFon	points.	

8. Do	the	same	for	the	given	shape	and	eliminate	any	remaining	combinaFons	where	two	intersecFon	
points	in	the	lhs	are	contained	within	a	single	line	segment	and	the	corresponding	intersecFon	points	
in	the	given	shape	are	not.		

A	similar	mechanism	applies	to	other	spaFal	data	types,	e.g.,	plane	segments.	

Descrip9ons and descrip9on rules

DescripFons	follow	a	strict	format	that	allows	them	to	be	interpreted	and	matched	by	the	sortal	library.	

Parametric descrip9ons

DescripFons	are	parametric	in	nature,	that	is,	when	adopted	as	the	le_-hand-side	(lhs)	of	a	descripFon	rule,	a	
descripFon	may	contain	one	or	more	parameters	that	can	be	matched	onto	parts	of	the	descripFon	under	
invesFgaFon.	When	adopted	as	the	right-hand-side	(rhs)	of	a	descripFon	rule,	a	descripFon	may	also	contain	
parameter	references	although	the	parameters	should	have	already	been	specified	in	the	corresponding	lhs,	
such	that	the	value	of	the	parameter	reference	in	the	rhs	can	be	taken	from	the	matching	of	the	lhs.	Obviously,	
descripFons	that	do	not	form	part	of	a	descripFon	rule	should	not	contain	any	parameters	or	parameter	
references,	otherwise	matching	will	necessarily	fail.	

Example	(‘descripFon’	is	the	descripFon	sort	name	and	‘a’	is	a	parameter):	

description: a

Descrip9on literals

Literal	values	in	descripFons	may	be	numbers,	double	quoted	strings	or	predefined	keywords.	The	la6er	include	
e,	nil,	pi,	true	and	false.	e	and	nil	are	equivalent	and	represent	an	‘empty’	enFty.	Depending	on	the	context,	the	

‘empty’	enFty	may	be	interpreted	to	denote	zero,	an	empty	string	or	an	empty	tuple.	The	literals	pi,	true	and	
false	denote	the	numbers	‘π’,	1	and	0,	respecFvely.	

Examples:	

status: true

list: e

Descrip9on tuples

While	descripFons	are	specified	in	textual	form,	they	can	be	structured	as	nested	lists/tuples.	Tuples	should	be	
enclosed	using	either	parentheses,	angle	brackets	or	square	brackets.	A	top-level	tuple	may	have	the	enclosing	
brackets	omi6ed.	The	enFFes	within	a	tuple	should	be	separated	using	either	commas	or	semicolons.	Again,	a	
top-level	tuple	may	have	the	separaFng	marks	omi6ed.	

Examples:	

segment: <(0, 0), (1, 0)>

� 	62

cubes: (“l:”, 10, “c:”, (0, 0), “r:”, 0) (“l:”, 10, “c:”, (5, 5), “r:”, 45)

Descrip9on parameters

A	descripFon	parameter	is	a	variable	term	that	is	specified	by	an	idenFfier	(any	sequence	of	le6ers,	digits	and/
or	underscores	starFng	either	with	a	le6er	or	underscore)	and	embedded	in	the	lhs	of	a	descripFon	rule.	Under	
rule	applicaFon,	the	parameter	will	be	matched	to	a	literal	or	a	tuple.	If	the	parameter	forms	part	of	a	string	
expression	(see	“String	expressions”	below),	this	literal	can	be	any	part	of	a	literal	string.	If	the	parameter	forms	
part	of	a	tuple,	it	matches	a	specific	element	of	the	tuple,	unless	it	is	signified	by	a	kleene	star	(‘*’)	or	a	kleene	
plus	(‘+’),	in	which	case	it	can	match	any	subsequence	of	elements	of	the	tuple,	respecFvely,	including	or	
excluding	an	empty	subsequence.	The	use	of	a	kleene	star	or	kleene	plus	signifier	allows	for	the	matching	of	
variable	length	tuples.	

Examples:	

fixed_length: <“Fixed”, var1> <var2, var3> var4

variable_length: (0, 0) (x1, y1) remainder*

Parameter condi9onals

Any	descripFon	parameter	may	be	specified	a	condiFonal	that	constrains	the	possible	values	of	this	parameter.	
The	condiFonal	must	follow	the	parameter	and	both	must	be	separated	only	by	a	quesFon	mark	(‘?’).	The	
condiFonal	may	be	either	enumeraFve	or	equaFonal,	or	specify	a	range.	An	enumeraFve	condiFonal	explicates	
a	finite	set	of	possible	values.	This	set	must	contain	either	all	numbers	or	all	(double	quoted)	strings,	and	the	
set	must	be	enclosed	using	curly	brackets.	An	equaFonal	condiFonal	specifies	a	numeric	equality	or	inequality	
on	the	parameter,	in	the	form	of	a	condiFonal	operator	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	and	operand.	The	operand	
must	be	either	a	number	or	a	numerical	expression	(see	“Numerical	expressions”	below)	operaFng	on	
numbers,	parameters—previously	defined—funcFons	(see	“FuncFons”	below)	and/or	references	(see	
“References”	below).	Neither	strictly	enumeraFve,	nor	strictly	condiFonal,	it	is	possible	to	specify	a	range	of	
numeric	values	using	a	minimum	and	maximum	value	enclosed	in	square	brackets.	

Examples:	

yard: value?{nil, “default”}

rooms: <nrooms?>2, rooms>

range: a?[0, 10]

Numerical expressions

A	numerical	expression	can	be	embedded	in	a	parameter	condiFonal	(in	the	lhs	of	a	descripFon	rule)	or	in	the	
rhs	of	a	descripFon	rule.	A	numerical	expression	can	operate	on	literal	keywords,	numbers,	numerical	funcFons	
(see	“FuncFons”	below),	parameters	and	references	(see	“References”	below).	Numerical	expressions	may	
include	the	operators	plus	(‘+’),	minus	(‘–‘),	Fmes	(‘*’),	divided-by	(‘/’),	modulo	(‘%’)	and	to-the-power-of	(‘^’),	
with	the	usual	operator	precedence	rules	applying	and	the	use	of	parentheses	to	override	these	rules	where	
necessary.	Other	operaFons	are	available	in	the	form	of	numerical	funcFons.	

Example	(‘vol’	and	‘length’	specify	parameter	references)	:	

volume: vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

� 	63

String expressions

A	string	expression	in	the	lhs	of	a	descripFon	rule	enables	the	idenFficaFon	of	substrings	in	the	matching	
process.	Here,	a	string	expression	is	a	concatenaFon	of	literals	and	parameters	(with	or	without	condiFonal).	A	
parameter	can	match	any	substring,	condiFoned	by	the	literal	components	(and	the	condiFonal,	if	present).	A	
concatenaFon	of	two	parameters,	without	a	literal	separaFng	the	two	parameters,	would	not	be	possible,	
unless	the	first	parameter	has	an	enumeraFve	condiFonal.	

A	string	expressions	in	the	rhs	of	a	descripFon	rule	can	include	literals,	parameter	references		(see	“References”	
below),	numerical	expressions	(enclosed	in	parentheses)	and	funcFons	returning	either	numbers	or	strings	(see	
“FuncFons”	below).	The	result	is	the	concatenaFon	of	all	components	upon	their	evaluaFon	into	literal	
numbers	or	strings.	

Examples	(the	two	lines	below	may	form	the	lhs	and	rhs	of	the	same	descripFon	rule):	

be: be1 be20.“, ”.be21.“-rafter beam in front, ”.be22.“-rafter beam in back”
“with ”.c?=(be21 + be22).“ columns”

be: be1 be20.“, ”.be21.“-rafter beam abutting ”.be22 “with ”.(c + 1).“ columns”

Tuple expressions

Tuple	expressions	allow	one	to	append	or	prepend	an	enFty	to	a	tuple,	join	two	tuples	or	add	two	tuples.	The	
operaFons	to	append,	prepend	and	join	all	take	the	same	format:	two	operands	separated	by	a	space.	The	
appropriate	interpretaFon	is	arrived	at	by	looking	at	the	structure	of	the	two	operands.	If	the	enFty	shares	a	
similar	“structure”	with	the	first	element	of	the	tuple,	e.g.,	both	are	numbers	or	both	are	a	tuple	of	similar	
structure,	then	the	enFty	will	be	appended	or	prepended	to	the	tuple	depending	on	its	posiFon	with	respect	to	
the	tuple.	If	both	operands	are	(nested)	tuples,	and	the	elements	of	both	tuples	have	the	same	structure,	then	
a	join	operaFon	will	be	assumed,	combining	the	elements	from	both	tuples	in	a	new,	single	tuple.	If	no	
structural	similarity	exists,	then	the	expression	will	instead	be	interpreted	as	a	tuple	omiLng	enclosing	brackets	
and	separator.	

Adding	two	tuples	adds	the	respecFve	enFFes:	if	both	enFFes	are	numbers	they	are	summed;	if	both	enFFes	
are	strings	they	must	be	idenFcal;	if	both	enFFes	are	tuples	and	have	the	same	structure,	then	addiFon	is	
applied	recursively.	

Examples	(the	la6er	also	includes	a	funcFon):	

position: a + (1, 0)

positions: a last(a) + (0, 1)

Func9ons

FuncFons	allow	for	addiFonal	operaFons	on	numbers,	strings	and	tuples,	or	a	combinaFon	thereof.	A	funcFon	
returns	a	single	value	from	any	one	of	these	three	enFty	types.	Strictly	numerical	funcFons	include	sqrt,	sin,	cos	
and	tan,	asin,	acos	and	atan,	taking	a	single	number	as	argument	and	returning	a	number.	FuncFons	operaFng	

on	strings	include	determining	the	length	of	a	string	and	determining	a	left	and	right	substring,	with	the	length	
of	the	substring	specified	as	an	addiFonal	argument	to	the	funcFon.	

FuncFons	operaFng	on	tuples	include	determining	the	length	of	a	tuple,	retrieving	the	first	or	last	element	of	a	

tuple,	the	minimum	(min)	and	maximum	(max)	value	inside	a	tuple,	retrieving	a	tuple	of	only	unique	elements,	

� 	64

a	tuple	of	pairs	extracFng	consecuFve	elements	pairwise	from	the	operand	tuple,	a	tuple	of	pairs	(segments)	

such	that	the	ith	pair	is	made	up	of	the	ith	and	(i+1)th	elements	of	the	operand	tuple,	a	tuple	of	tuples	
idenFfying	loops	in	the	operand	tuple	and	a	tuple	of	tuples	represenFng	an	adjacencies	matrix.	The	la6er	

funcFon	takes	two	arguments,	a	tuple	of	‘enclosures’	and	a	tuple	of	‘connecFng’	elements.	

Tuples	of	numbers	can	be	considered	as	vectors,	currently	only	vectors	of	length	two	or	three	are	considered.	
FuncFons	on	vectors	require	the	different	vectors	to	have	the	same	length.	These	funcFons	include	determining	
the	magnitude	(mag)	of	a	vector	or	the	distance	(also	mag)	or	angle	between	two	vectors,	adding	(vectoradd)	or	
subtracFng	(vectorsubstract)	two	vectors,	taking	the	dotproduct	or	crossproduct	of	two	vectors	or	scaling	a	

vector	by	a	number	(vectorscale).	

Finally,	a	funcFon	to	generate	a	random	number	takes	as	input	a	tuple	of	two	or	three	numbers,	with	the	first	

two	specifying	the	range	and	the	opFonal	third	one	the	step.	More	informaFon	on	funcFons	is	provided	further.	

Examples:	

positions: a (random(0,10,1), 0)

References

We	disFnguish	three	kinds	of	references.	Firstly,	parameter	references	are	variable	terms	in	the	rhs	of	a	
descripFon	rule	that	reference	variable	terms	(parameters)	in	the	lhs	of	the	same	(or	another)	descripFon	rule.	
The	value	of	the	parameter	reference	in	the	rhs	is	the	value	of	the	same	parameter	in	the	lhs	upon	the	
matching	of	the	lhs.	

Secondly,	a	descripFon	reference	is	similar	to	a	parameter	reference	but	references	a	variable	term	in	another	
descripFon	(that	is	part	of	the	same	rule).	In	such	case,	the	parameter	name	must	be	preceded	by	the	
descripFon	type	name	in	order	to	idenFfy	the	appropriate	descripFon	and	parameter.	AlternaFvely,	rather	than	
referencing	a	specific	parameter,	the	enFre	value	of	the	descripFon	can	be	referenced	using	the	term	value.	

Finally,	a	shape	reference	similarly	references	data	from	the	shape	rule	component	of	the	rule.	In	order	to	
reference	shape	data,	you	must	refer	to	the	element	type	name	(see Shape element types	below).	However,	

this	will	only	work	if	there	is	only	one	element	of	the	specific	type,	otherwise	the	reference	will	be	ambiguous.	
In	the	case	of	points,	you	can	disambiguate	the	point	by	addiFonally	specifying	its	label,	provided	the	point	has	
a	label	and	the	label	is	unique	(see	example	below).	

Example	querying	the	posiFons	of	two	points	with	given	labels:	

constraint: a?>=mag(point3D.value:labelD.value=”1”, point3D.value:labelD.value
=”2”)

Shape element types and their available proper9es

Every	geometric	shape	element	type,	except	for	circular	arcs,	is	idenFfied	by	two	names.	The	first	one	should	be	
used	within	non-parametric	rules	and	the	second	within	parametric	rules	(pRule).	Note	that	circular	arcs	are	

not	yet	available	within	parametric	rules	and,	if	specified,	will	be	ignored.	

type name property output value

points point3D value vector	tuple* posiFon

� 	65

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers.  

pointP3D

line	segments lineSeg3D root	

direcFon	
unitDir	
start	
end	
midpoint	
length	
squareLength

vector	tuple*	

vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
number	
number

root	point	(nearest	point	to	
the	origin)	
direcFon	vector	
unit	direcFon	vector	
‘smallest’	endpoint	
‘greatest’	endpoint	
midpoint	
line	length	
square	value	of	line	length

lineSegP3D

plane	segments planeSeg3D normal	
area	
outer

vector	tuple*	
number	
tuple	of	vector	
tuples*

normal	vector	
plane	area	
list	of	outer	boundary	
verFces

planesegP3D

circles circle3D normal	
center	
radius	
diameter	
circumference	
area

vector	tuple*	
vector	tuple*	
number	
number	
number	
number

plane	normal	vector	
center	point	
radius	
diameter	
circumference	
area	of	the	circle

circleP3D

ellipses ellipse3D normal	
center	
foci	

radii	

area

vector	tuple*	
vector	tuple*	
tuple	of	vector	
tuples*	
tuple	of	numbers	

number

plane	normal	vector	
center	point	
list	of	focal	points	

list	of	longer	and	shorter	
radii	
area	of	the	ellipse

ellipseP3D

circular	arcs arc3D normal	
center	
radius	
diameter	
circumference	
start	
end	
length	
angle	

area

vector	tuple*	
vector	tuple*	
number	
number	
number	
vector	tuple*	
vector	tuple*	
number	
number	

number

plane	normal	vector	
circle	center	point	
circle	radius	
circle	diameter	
circle	circumference	
endpoint	(ccw)	
endpoint	(cw)	
arc	length	
angle	covered	by	the	arc	(in	
radians)	
area	covered	by	the	arc

quadraFc	Bezier	
curves

bezier3D normal	
start	
controlPoint	
end	
vertex

vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*

plane	normal	vector	
1st	control	point	
2nd	control	point	
3rd	control	point	
maximum	or	minimum	of	
the	curve

bezierP3D

labels/	
descripFons	as	
point	a6ribute

labelD value string label	or	descripFon	string

� 	66

A formal nota9on for descrip9ons

The	table	below	presents	a	formal	notaFon	for	descripFons	and	the	le_-hand-side	(lhs)	and	right-hand-side	
(rhs)	of	descripFon	rules	in	Extended	Backus-Naur-Form	(EBNF),	including	examples.	The	same	non-terminals	
serve	to	define	the	producFon	rules	for	a	descripFon,	an	lhs	and	an	rhs.	Only	when	necessary	are	alternaFve	
producFon	rules	defined	for	the	same	non-terminal;	these	are	then	idenFfied	by	adding	the	terms	descrip9on,	
lhs	and	rhs,	respecFvely,	enclosed	within	angle	brackets	(‘<...>’),	as	a	prefix	to	the	respecFve	producFon	rule.	

typed-descripFon	=	type-name	‘:’	descripFon	.	

type-name	=	idenFfier	.	
descripFon	=	descripFon-enFty	|	descripFon-sequence	.  
descripFon-enFty	=	literal	|	top-level-tuple	.  
descripFon-sequence	=	‘&’	descripFon-enFty	‘&’	{	descripFon-enFty	‘&’	}	.

literal	=	keyword-literal	|	number	|	string	.  
keyword-literal	=	‘e’	|	‘nil’	|	‘pi’	|	‘true’	|	‘false’.  
number	=	[‘–’]	digit-sequence	[‘.’	digit-sequence]	. 
digit-sequence	=	digit	{	digit	}	. 
digit	=	‘0’	|	‘1’	|	‘2’	|	‘3’	|	‘4’	|	‘5’	|	‘6’	|	‘7’	|	‘8’	|	‘9’	.  
string	=	‘“’	{	string-character	}	‘”’	. 
string-character	=	any-character-except-quote	|	‘\’	‘“’	.

Example	descrip6on-en6ty: 
“centrally	divided,	double	1-ra_er	beam	in	front	and	back”	
Example	descrip6on-sequence: 
&e&0&“nothing”&

top-level-tuple	=	tuple	|	unmarked-tuple	. 
tuple	=	‘(’	tuple-enFFes	‘)’	|	‘<’	[tuple-enFFes]	‘>’	|	‘[’	[tuple-enFFes]	‘]’	.  
<descripFon>tuple-enFFes	=	tuple-enFty-sequence	. 
<lhs>tuple-enFFes	=	tuple-enFty-sequence	|	tuple-expression	. 
<rhs>tuple-enFFes	=	tuple-enFty-sequence	|	tuple-expression	. 
tuple-enFty-sequence	=	tuple-enFty	({	‘,’	tuple-enFty	}	|	{	‘;’	tuple-enFty	})	. 
<descripFon>tuple-enFty	=	literal	|	tuple	.  
<lhs>tuple-enFty	=	numeric-expression	|	string-expression	|	tuple	.  
<rhs>tuple-enFty	=	numeric-expression	|	string-expression	|	tuple	|	funcFon-returns-tuple	.  
unmarked-tuple	=	tuple-expression	|	tuple	(tuple	|	keyword-literal)	{	tuple-enFty	}	.

Example	tuple: 
(“l:”,	10,	“c:”,	(0,	0),	“r:”,	0)	
Example	unmarked-tuple: 
<"	",	"O",	"R0",	"R1">	<"O",	1,	1,	1>	<"R0",	1,	1,	0>	<"R1",	1,	0,	1>

descripFon-rule-side	=	descripFon-rule-enFty	|	descripFon-rule-sequence	. 
<lhs>descripFon-rule-enFty	=	literal	|	parameter	[‘?’	condiFonal]	|	string-expression	|	top-level-tuple	.  
<rhs>descripFon-rule-enFty	=	numeric-expression	|	string-expression	|	funcFon-returns-tuple	|	tuple-
expression	. 
descripFon-rule-sequence	=	‘&’	descripFon-rule-enFty	‘&’	{	descripFon-rule-enFty	‘&’	}	.

� 	67

parameter	=	idenFfier	.	  
idenFfier	=	(le6er	|	underscore)	{	(le6er	|	underscore	|	digit)	}	.  
le6er	=	‘A’	|	‘B’	|	‘C’	|	‘D’	|	‘E’	|	‘F’	|	‘G’	|	‘H’	|	‘I’	|	‘J’	|	‘K’	|	‘L’	|	‘M’	|	‘N’	|	‘O’	|	‘P’	|	‘Q’	|	‘R’	|	‘S’	|	‘T’	|	‘U’	|	
‘V’	|	‘W’	|	‘X’	|	‘Y’	|	‘Z’	|	‘a’	|	‘b’	|	‘c’	|	‘d’	|	‘e’	|	‘f’	|	‘g’	|	‘h’	|	‘i’	|	‘j’	|	‘k’	|	‘l’	|	‘m’	|	‘n’	|	‘o’	|	‘p’	|	‘q’	|	‘r’	|	‘s’	
|	‘t’	|	‘u’	|	‘v’	|	‘w’	|	‘x’	|	‘y’	|	‘z’	. 
underscore	=	‘_’	.

Example	<lhs>descrip6on-rule-en6ty: 
<“Fixed”,	var1>	<var2,	var3>	remainder	
Example	descrip6on-rule-sequence: 
&a1&a2&a3&a4&a5&a6&a7&a8&

condiFonal	=	enumeraFon	|	equaFon	|	range.  
enumeraFon	=	‘{’	(number-sequence	|	string-sequence)	‘}’	. 
number-sequence	=	number	{	‘,’	number	}	. 
string-sequence	=	string	{	‘,’	string	}	. 
equaFon	=	comparator	comparand	.  
comparator	=	‘=’	|	‘<>’	|	‘<’	|	‘<=’	|	‘>’	|	‘>=’	.  
comparand	=	number	|	‘(’	numeric-expression	‘)’	|	parameter	|	reference	.	
range	=	‘[‘	number	‘,’	number	‘]’	.

Example	<lhs>descrip6on-rule-en6ty	with	enumera6on: 
yard?{nil,	“default”}	
Example	<lhs>descrip6on-rule-en6ty	with	equa6on: 
<nrooms?>2,	rooms>

numeric-expression	=	term	{	addiFon-operator	term	}	.  
term	=	factor	{	mulFplicaFon-operator	factor	}	.  
factor	=	base	{	exponenFaFon-operator	exponent	}	.  
exponent	=	base	.  
base	=	keyword-literal	|	number	|	‘(’	numeric-expression	‘)’	|	funcFon-returns-number	|	parameter	|	
reference	.  
exponenFaFon-operator	=	‘^’	.  
mulFplicaFon-operator	=	‘*’	|	‘/’	|	‘%’	.  
addiFon-operator	=	‘+’	|	‘–’	.

Example	numeric-expression: 
vol	–	pi^2	*	radius	*	(length	/	2)^2	+	4	/	3	*	pi	*	(length	/	2)^3

string-expression	=	string-expression-enFty	{	‘.’	string-expression-enFty	}	.  
<lhs>string-expression-enFty	=	literal	|	parameter	[‘?’	condiFonal]	.  
<rhs>string-expression-enFty	=	base	|	string	|	funcFon-returns-string	.

Example	<rhs>string-expression: 
“with	”.(c	+	1).“	columns”	
Example	<lhs>string-expression: 
“with	”.c?=(be21	+	be22).“	columns”

<lhs>tuple-expression	=	tuple-append	|	tuple-prepend	. 
<rhs>tuple-expression	=	tuple-addiFon	|	tuple-extension	.	 
tuple-append	=	{	tuple-enFty	}	parameter	(‘*’	|	‘+’)	tuple-enFty	{	tuple-enFty	}	[tuple-expression]	. 
tuple-prepend	=	[tuple-expression]	{	tuple-enFty	}	tuple-enFty	parameter	(‘*’	|	‘+’)	{	tuple-enFty	}	. 
tuple-addiFon	=	[parameter]	‘+’	basic-tuple-argument	.	 
tuple-extension	=	{	tuple-enFty	}	parameter	{	tuple-enFty	}	[tuple-expression]	.

� 	68

Example	tuple-prepend: 
h1	h2	H*	
Example	tuple-extension: 
a1	last(a1)	+	(0,	1)	
Example	tuple-addi6on: 
bedrooms	+	<1,	[(“couple”,	0),	(“double”,	0),	(“single”,	1)]>

funcFon	=	funcFon-returns-number	|	funcFon-returns-string	|	funcFon-returns-tuple	. 
funcFon-returns-number	=	numeric-funcFon	|	length-funcFon	|	string-funcFon-untyped	|	tuple-funcFon-
untyped	|	vector-funcFon	|	round-funcFon	|	random-funcFon	.  
numeric-funcFon	=	(‘sqrt’	|	‘sin’	|	‘cos’	|	‘tan’	|	‘asin’	|	‘acos’	|	‘atan’)	‘(’	numeric-expression	‘)’	|	‘atan2’	‘(’	
numeric-expression	‘,’	numeric-expression	‘)’	.  
length-funcFon	=	‘length’	‘(’	(string-argument	|	tuple-argument)	‘)’	. 
<lhs>string-argument	=	string	|	funcFon-returns-string	|	parameter	|	reference	.  
<rhs>string-argument	=	string-expression	.  
funcFon-returns-string	=	string-funcFon-returns-string	|	string-funcFon-untyped	|	tuple-funcFon-untyped	. 
string-funcFon-returns-string	=	(‘le_’	|	‘right’)	‘(’	string-argument	‘,’	numeric-expression	‘)’	.  
string-funcFon-untyped	=	‘eval’	‘(’	string-argument	‘)’	.  
tuple-funcFon-untyped	=	(‘first’	|	‘last’	|	‘min’	|	‘max’)	‘(’	tuple-argument	‘)’	.  
<lhs>tuple-argument	=	basic-tuple-argument	. 
<rhs>tuple-argument	=	basic-tuple-argument	|	tuple-expression	. 
basic-tuple-argument	=	tuple	|	funcFon-returns-tuple	|	parameter	|	reference	. 
funcFon-returns-tuple	=	tuple-funcFon-returns-tuple	|	funcFon-returns-vector	|	string-funcFon-untyped	|	
tuple-funcFon-untyped	.  
tuple-funcFon-returns-tuple	=	(‘unique’	|	‘segments’	|	‘pairwise’	|	‘loops’)	‘(’	tuple-argument	‘)’	|	
‘adjacencies’	‘(’	tuple-argument	‘,’	tuple-argument	‘)’	. 
funcFon-returns-vector	=	two-vector-funcFon	|	proj-vector-funcFon	|	scale-vector-funcFon	|	round-
funcFon	.  
two-vector-funcFon	=	(‘vectoradd’	|	‘vectorsubtract’	|	‘dotproduct’	|	‘crossproduct’)	‘(’	(vector-argument	‘,’	
vector-argument	|	two-vector-argument)	‘)’	.  
vector-argument	=	‘(‘	numeric-expression	‘,’	numeric-expression	[‘,’	numeric-expression]	‘)’	|	funcFon-
returns-vector	|	parameter	|	reference	.  
two-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘)’	|	parameter	|	reference	. 
proj-vector-funcFon	=	‘proj’	‘(’	(vector-argument	‘,’	vector-argument	‘,’	vector-argument	|	three-vector-
argument)	‘)’	.  
three-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘,’	vector-argument	‘)’	|	parameter	|	
reference	.  
scale-vector-funcFon	=	‘vectorscale’		‘(’	(vector-argument	‘,’	numeric-expression	|	vector-number-argument)	
‘)’	. 
vector-number-argument	=	‘(‘	vector-argument	‘,’	numeric-expression	‘)’	|	parameter	|	reference	. 
vector-funcFon	=	(‘mag’	|	‘angle’)	(‘(’	vector-argument	‘,’	vector-argument	‘)’	|	‘(’	two-vector-argument	‘)’)	. 
round-funcFon	=	‘round’	‘(‘	(numeric-expression	|	vector-argument	‘)’	.  
random-funcFon	=	‘random’	‘(’	vector-argument	‘)’	.

Example	func6on-returns-number: 
length(“room”)	
Example	func6on-returns-tuple: 
adjacencies(a4,	a5	a6)

� 	69

reference	=	reference-to-lhs	|	reference-to-rhs	. 
reference-to-lhs	=	[‘lhs.’]	reference-designator	‘.’	(‘value’	|	parameter	|	property)	[‘:’	filter]	.  
reference-to-rhs	=	‘rhs.’	reference-designator	‘.’	property	[‘:’	filter]	.  
reference-designator	=	idenFfier	.  
property	=	idenFfier	.  
filter	=	reference-designator	‘.’	property	filter-operator	(number	|	vector	|	string)	.  
filter-operator	=	‘=’	|	‘<>’	|	‘<=’	|	‘>=’	.  
vector	=	[raFonal]	‘(’	raFonal	‘,’	raFonal	‘,’	raFonal	‘)’	.  
raFonal	=	[‘–’]	digit-sequence	[‘/’	digit-sequence]	.

Example	reference-to-lhs: 
indices.value	
Example	reference-to-rhs: 
rhs.secFons.radius:labels.label=“S”

� 	70

Descrip9on func9ons

Numerical func9ons

*atan	versus	atan2:	

− atan	takes	1	input	and	returns	a	result	from	quadrants	1	and	4	
− atan2	takes	2	inputs	(u,	v)	that	specify	a	raFo	u/v	and	returns	a	result	from	all	quadrants	
For	example:	

func6on input output

abs 1	number The	absolute	value	of	the	number

sqrt 1	number The	square	root	of	the	number

sin 1	number The	sine	value	of	the	angle	(in	radians)

cos 1	number The	cosine	value	of	the	angle	(in	radians)

tan 1	number The	tangent	value	of	the	angle	(in	radians)

asin 1	number The	inverse	sine	of	the	number	(in	radians)

acos 1	number The	inverse	cosine	of	the	number	(in	radians)

atan* 1	number The		inverse	tangent	of	the	number	(in	radians)

atan2* 2	numbers The	inverse	tangent	of	the	raFo	(in	radians)

todegree 1	number The	value	converted	from	radians	in	degrees

toradian 1	number The	value	converted	from	degrees	in	radians

round 1	number The	value	rounded	to	the	nearest	integer

u v x	=	u/v atan(x) atan2(u,v)

2 1 2 1.1071487177940904 1.1071487177940904

-2 1 -2 -1.1071487177940904 -1.1071487177940904

2 -1 -2 -1.1071487177940904 2.0344439357957027

-2 -1 2 1.1071487177940904 -	2.0344439357957027

� 	71

String func9ons

 
Tuple func9ons

func6on input output

length 1	string The	length	of	the	string

le_ 1	string	and	1	number The	le_	substring	of	the	specified	length

right 1	string	and	1	number The	right	substring	of	the	specified	length

func6on input output

length 1	tuple The	number	of	elements	in	the	tuple

first 1	tuple The	first	element	of	the	tuple

last 1	tuple The	last	element	of	the	tuple

min 1	tuple The	element	of	the	tuple	with	minimum	value

max 1	tuple The	element	of	the	tuple	with	maximum	value

unique 1	tuple A	tuple	of	only	unique	elements

pairwise 1	tuple A	tuple	of	pairs	extracFng	consecuFve	elements	
pairwise	from	the	operand	tuple; 
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(c,	d))

segments 1	tuple A	tuple	of	overlapping	pairs	extracFng	consecuFve	
elements	from	the	operand	tuple; 
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(b,	c),	(c,	d))

loops 1	tuple A	tuple	of	tuples	idenFfying	loops	in	the	operand	
tuple;	e.g.,	(a,	b,	c,	d,	a,	e,	f,	c)	->	((a,	b,	c,	d),	(c,	d,	a,	e,	
f)

adjacencies 2	tuples:	a	tuple	of	“enclosures”	
and	a	tuple	of	“connecFng”	
elements

A	tuple	of	tuples	represenFng	an	adjacency	matrix

random 1	tuple:	either	2	or	3	numbers A	random	number	within	the	range	specified	by	the	
first	two	operands;	the	opFonal	third	operand	is	
considered	as	a	step	value	for	the	random	number	
generaFon

round 1	vector	tuple* A	vector	tuple	with	each	value	rounded	to	the	nearest	
integer

mag 2	vector	tuples* The	distance	between	the	two	vectors

angle 2	vector	tuples* The	angle	between	the	two	vectors	(counterclockwise	
angle	from	the	first	to	the	second	vector)	(in	radians)

proj 3	vector	tuples*:	a	direcFon	
vector,	a	root	vector	and	a	
posiFon	vector

A	vector	tuple	represenFng	the	projecFon	of	the	
posiFon	vector	on	the	line	specified	by	the	direcFon	
vector	and	root	vector

vectoradd 2	vector	tuples* A	vector	tuple	represenFng	the	sum	of	the	two	vectors

� 	72

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers;	any	funcFon	accepFng	(one	or	more)	vector	tuples	will	also	
accept	a	single	tuple	collecFng	all	operands	

vectorsubtract 2	vector	tuples* A	vector	tuple	represenFng	the	difference	of	the	two	
vectors

vectorscale 1	vector	tuple*	and	1	number A	vector	tuple	represenFng	the	product	of	the	vector	
and	the	scalar

dotproduct 2	vector	tuples* The	number	resulFng	from	the	dot	product	of	the	two	
vectors

crossproduct 2	vector	tuples* A	vector	tuple	represenFng	the	cross	product	of	the	
two	vectors

� 	73

Annex C: Descrip9on of Sortal Imports

This	annex	describes	the	funcFons	of	sortal	imports.	These	are	mostly	seen	in	the	source	code	files	of	SortalGI	
API	and	Rhino	methods.	

IMPORT DESCRIPTION

a6ributeSort

An	a6ribute	sort	specifies	a	subordinate,	semi-conjuncFve	composiFon	of	a	
primiFve	sort	(its	base)	with	any	other	sort	(its	weight/label)	under	the	object-
a6ribute	relaFonship.	An	individual	of	an	a6ribute	sort	is	an	individual	of	the	base	
sort	(the	associate	individual)	that	is	assigned	a	form	(a	collecFon	of	zero,	one	or	
more	individuals)	of	the	weight/label	sort	as	an	a6ribute	(the	aIribute	form).		

If	the	a6ribute	form	is	empty,	it	may	be	omi6ed,	and	the	individual	is	treated	as	an	
individual	of	the	base	sort	only,	rather	than	of	the	a6ribute	sort.	

An	a6ribute	sort	may	have	a	name	assigned.	The	a6ributeSort	class	represents	an	
a6ribute	sort	addiFonally	by	its	base	and	weight	sorts.	The	canonical	version	of	an	
a6ribute	sort	is	the	unnamed	a6ribute	sort	of	the	canonical	versions	of	the	base	and	
weight	sort.

bezierCurve2D,	
bezierCurve3D,	
bezierCurveP2D,	
bezierCurveP3D

These	classes	serve	as	base	objects	for	quadraFc	Bezier	curves,	that	contain	their	
properFes,	behaviors	and	methods.	P2D	and	P3D	indicate	that	parametric	behavior	
is	enabled	in	the	class.

circle2D, 
circle3D, 
circleP2D, 
circleP3D

These	classes	serve	as	base	objects	for	circles,	that	contain	their	properFes,	
behaviors	and	methods.	P2D	and	P3D	indicate	that	parametric	behavior	is	enabled	in	
the	class.

circularArc2D, 
circularArc3D

These	classes	serve	as	base	objects	for	circular	arcs,	that	contain	their	properFes,	
behaviors	and	methods.	P2D	and	P3D	indicate	that	parametric	behavior	is	enabled	in	
the	class.

color

This	class	serves	as	base	object	for	color	values	specified	in	RGB	or	HSV	space,	that	
contain	their	properFes,	behaviors	and	methods.  
An	addiFonal	argument	may	specify	the	kind	of	ordinal	behavior,	i.e.,	whether	the	
sum	of	two	color	values	is	the	average	RGB	value,	the	maximum	RGB	value,	the	sum	
of	the	RGB	values,	or	defined	as	a	funcFon	of	the	respecFve	alpha	values.

compoundSort
The	compoundSort	class	represents	a	disjuncFve	sort	as	an	ordered	set	of	
component	sorts	(disjuncFve	sorts	only).	In	its	canonical	version,	component	sorts	
cannot	themselves	be	compound	sorts.

coordinate
A	class	structure	to	contain	and	handle	numerical	data	such	as	the	<x.y.z>	values	of	
vectors.	It	is	specifically	built	to	allow	for	easy	conversion	between	numerical	data	
types	such	as	float	<->	integer.

� 	74

descripFon

Compound	data	enFty	with	discrete	behavior.	A	descripFon	may	contain	tuples,	
strings,	numbers	and	certain	literals.	When	part	of	a	descripFon	rule,	a	descripFon	
may	be	parametric	and	contain	expressions.	

A	descripFon	sort	supports	the	specificaFon	of	descripFon	funcFons/grammars	
(SFny	1981;	Stouffs	2016a;	2016b)2.

disjuncFveSort

A	disjuncFve	sort	specifies	a	co-ordinate,	disjuncFve	composiFon	(under	the	
operaFon	of	sum)	of	any	number	of	primiFve	and	a6ribute	sorts.	A	form	of	a	
disjuncFve	sort	is	a	composiFon	of	forms	from	the	respecFve	component	sorts	and	
is	called	a	metaform.	The	representaFon	of	each	component	sort	in	the	composiFon	
of	forms	is	opFonal.	

The	disjuncFveSort	class	represents	a	disjuncFve	sort	as	an	ordered	set	of	
component	sorts.	In	its	canonical	version,	component	sorts	cannot	themselves	be	
disjuncFve	sorts.	If	any	component	sort	is	an	unnamed	disjuncFve	sort,	instead,	its	
components	become	part	of	the	disjuncFve	composiFon.	

If	any	component	sort	is	part	of	another,	unnamed	component	sort,	the	former	
component	sort	is	not	included	in	the	composiFon.	A	disjuncFve	sort	may	have	a	
name	assigned.

ellipse2D, 
ellipse3D, 
ellipseP2D, 
ellipseP3D

These	classes	serve	as	base	objects	for	ellipses,	that	contain	their	properFes,	
behaviors	and	methods.	P2D	and	P3D	indicate	that	parametric	behavior	is	enabled	in	
the	class.

ellipFcalArc2D,	
ellipFcalArc3D

These	classes	serve	as	base	objects	for	ellipFcal	arcs,	that	contain	their	properFes,	
behaviors	and	methods.

enumeraFve
This	class	serves	as	base	object	for	enumeraFve	values,	that	contain	their	properFes,	
behaviors	and	methods.

flow

A	sequence	of	rule	objects	along	with	instrucFons	for	the	ordering	of	rule	objects,	
the	number	of	Fmes	a	rule	should	be	looped,	e.g.:	

‘r1	r2(3)	r5+	{r1	r2	r4*}’

form

A	form	is	a	collecFon	of	one	or	more	individuals	from	the	same	sort,	e.g.,	a	
collecFon	of	points	defines	a	form	of	the	sort	of	points.	

Forms	can	be	collected	into	metaforms	or	assigned	as	an	a6ribute	form	to	another	
individual.	

− A	metaform	is	a	collecFon	of	forms	in	accordance	to	a	disjuncFve	sort.	

− An	a6ribute	form	is	a	form,	or	metaform,	that	is	assigned	as	an	a6ribute	to	
another	individual,	in	accordance	to	an	a6ribute	sort.	

A	form	is	completely	specified	by	its	sort	and	its	collecFon	of	individuals	(or	in	the	
case	of	a	metaform,	its	collecFon	of	forms).

IMPORT DESCRIPTION

� 	75

label

A	label	is	an	alphanumerical	data	enFty	with	a	discrete	behavior,	i.e.,	the	value	of	
the	sum	of	two	labels	is	the	collecFon	of	both	labels,	unless	both	labels	are	idenFcal,	
in	which	case	is	either	label.	

The	Label	class	extends	on	the	Individual	class.	It	defines	the	characterisFc	individual	
for	labels.	A	label	is	represented	as	a	string.	This	characterisFc	individual	accepts	no	
parameters.	It	specifies	an	{sortal.map.	ExactMap}	as	default.	

Forms	of	labels	adhere	to	a	discrete	behavior.

line2D, 
line3D

A	line	is	a	linear,	connected,	non-bounded	planar	curve	with	a	discrete	behavior.	

The	Line	class	extends	on	the	Individual	class.	It	defines	the	characterisFc	individual	
for	lines.	A	line	is	represented	as	a	direcFon	vector	and	a	posiFon	vector	specifying	
the	root	of	the	line.	This	characterisFc	individual	accepts	no	parameters.	

It	specifies	a	{sortal.map.	similarityMap}	as	default.	Forms	of	lines	adhere	to	a	
discrete	behavior.

lineSegment2D,	
lineSegment3D,	
lineSegmentP2D,	
lineSegmentP3D

lineSegment2D:	A	bounded	(and	half-bounded)	line	segment	in	two-dimensional	
space,	with	interval	behavior.	

lineSegment3D:	A	bounded	(and	half-bounded)	line	segment	in	three-dimensional	
space,	with	interval	behavior.		

A	line-segment	is	a	connected	and	bounded	segment	of	a	line	with	an	interval	
behavior.	The	line	defines	the	co-descriptor	of	the	line-segment,	the	boundary	of	the	
segment	is	defined	by	the	start	and	end	posiFons	of	the	line-segment.	Vectors	or	
points	may	be	used	to	define	the	start	and	end	posiFons.	

The	lineSegment	class	extends	on	the	Line	class	and	implements	the	Interval	
interface.	It	defines	the	characterisFc	individual	for	line-segments.	P2D	and	P3D	
indicate	that	parametric	behavior	is	enabled	in	the	class.	

A	line-segment	is	represented	as	a	line	with	two	raFonal	scalars	specifying	the	tail	
and	head	relaFve	to	the	line's	root.	This	characterisFc	individual	accepts	no	
parameters.	It	specifies	a	{sortal.map.	similarityMap}	as	default.	Forms	of	line-
segments	adhere	to	an	interval	behavior.

planeSegment2D,	
planeSegment3D,	
planeSegmentP2D,	
planeSegmentP3D

planeSegment2D:	A	bounded,	recFlinear	plane	segment	in	two-dimensional	space,	
with	areal	behavior.	

planeSegment3D:		A	bounded,	recFlinear	plane	segment	in	three-dimensional	space,	
with	areal	behavior.		

These	refer	to	classes	that	serve	as	base	objects	for	plane	segments,	that	contain	
their	properFes,	behaviors	and	methods.	P2D	and	P3D	indicate	that	parametric	
behavior	is	enabled	in	the	class.

IMPORT DESCRIPTION

� 	76

point2D, 
point3D, 
pointP2D, 
pointP3D

point2D: A	point	in	three-dimensional	space,	with	discrete	behavior.	

point3D:	A	point	in	two-dimensional	space,	with	discrete	behavior.	

A	point	is	a	0-dimensional	geometric	data	enFty	with	a	discrete	behavior.	P2D	and	
P3D	indicate	that	parametric	behavior	is	enabled	in	the	class.	

The	point	class	extends	on	the	Individual	class.	It	defines	the	characterisFc	individual	
for	points.	A	point	is	represented	as	a	posiFon	vector.	

This	characterisFc	individual	accepts	no	parameters.	It	specifies	a	{sortal.map.	
similarityMap}	as	default.	Forms	of	points	adhere	to	a	discrete	behavior.

primiFveSort
Specifies	a	single	data	type.	An	individual	of	a	primiFve	sort	has	a	data	value	of	the	
specified	type.

rule Rule	class	that	takes	as	input	the	rule	descripFon,	LHS	and	RHS	sides	of	rule.

similarityMap

Mapping	funcFon	used	to	disFnguish	that	two	individuals	of	the	same	sort	type	(e.g.	
two	line	segments	ls1	and	ls2,	or	two	points	p1	and	p2)	are	of	the	same	sort	type	
despite	being	in	different	locaFons	or	having	different	coordinates,	and	that	they	can	
be	mapped	together.

sdlParser
Class	of	methods	that	handles	reading	and	wriFng	SDL	files.	This	class	also	stores	
forms,	rules,	flows	and	sort	types	under	the	following	dicFonaries: 
sdlParser.forms,	sdlParser.rules,	sdlParser.flows,	sdlParser.sorts

sort
Sorts	can	be	considered	as	class	structures,	specifying	either	a	single	data	type	or	a	
composiFon	of	other	class	structures.	For	instance,	data	types	such	as	points,	labels,	
and	lines	all	define	sorts.

vector2D,  
vector3D

A	vector	specifies	a	posiFon	in	a	two-dimensional	Cartesian	space.	

If	normalized,	it	only	specifies	a	direcFon.	The	Vector	class	defines	a	vector	as	a	pair	
of	{coordinate}'s	and	a	w	factor	to	reflect	the	vector's	infinity	characterisFc	

A	Vector	object	is	never	modified	a_er	creaFon;	thus,	it	can	be	used	mulFple	Fmes.

weight, 
rWeight

A	weight	specifies	a	value	for	the	shade	of	black	to	white	of	a	plane	or	a	line	
segment,	or	perhaps	the	width	of	a	line.	Weight	can	be	defined	from	a	range	of	0	to	
the	maximum	value.	A	special	version	of	weight,	called	rWeight,	performs	addiFon	
and	subtracFon	of	weights	arithmeFcally.

IMPORT DESCRIPTION

� 	77

Annex D: Legacy Methods

The	funcFons	listed	in	this	annex	contain	legacy	behavior,	i.e.,	they	accept	agnosFc	shape	dicFonaries	as	input	
or	produce	them	as	output.	These	will	eventually	be	phased	out	from	the	API	but	may	be	used	to	understand	
the	underlying	structure	of	data	conversion	from	Rhino	GUIDs	to	sortal	individuals.	The	only	excepFon	to	this	is	
‘sortal_setup’.	This	is	rather	a	convenience	funcFon	that	helps	to	setup	the	sortal	library.	However,	it	makes	
assumpFons	that	may	not	fit	every	user,	as	such	it	is	only	meant	as	an	example	and	not	part	of	the	SortalGI	API.		

Summary of all methods
NAME PURPOSE

draw_result
Draws	one	rule	applicaFon	from	list	of	rule	applicaFons,	based	on	the	index	number	
given	by	the	user;	this	funcFon	goes	together	with	find_rule_appns_ag	as	it	extracts	the	
agnosFc	dicFonary	of	the	rule	applicaFon	from	the	output	of	find_rule_appns_ag

draw_results
Draws	all	rule	applicaFons	from	list	of	rule	applicaFons;	this	funcFon	goes	together	with	
find_rule_appns_ag	as	it	extracts	the	agnosFc	dicFonary	of	the	rule	applicaFon	from	the	
output	of	find_rule_appns_ag

find_rule_appns_a
g

Generates	the	rule	applicaFons	from	a	given	rule-shape	combinaFon;	takes	as	input	rule	
object	or	rule	name,	subshape	name/agnosFc	dicFonary	and	mainshape	name/agnosFc	
dicFonary;	returns	list	of	<transformaFon	matrix,	match,	result,	shape	a_er	applicaFon>	
as	agnosFc	dicFonaries

create_shape_ag
Creates	a	shape	object	from	the	following	inputs:	shape	name,	shape	agnosFc	object/
Rhino	geometry,	target	sort	type;	shape	is	registered	in	form	register	under	its	name

convert_to_agnos
Fc

Converts	a	list	of	Rhino	GUIDs	to	their	agnosFc	dicFonary	counterpart,	based	on	the	
target	sort	type	specified	by	the	user;	the	target	sort	type	input	may	be	le_	blank	if	
there	is	only	one	funcFoning	geometric	disjuncFve	sort	acFve	in	'rhino_shapes_c'

maximalize_ag
Maximalizes	an	agnosFc	object/set	of	Rhino	geometries	(if	the	la6er,	redraws	the	Rhino	
geometries)

sortal_setup

Sets	up	default	sortal	library	background	data,	i.e.	geometric	sorts	and	their	a6ributes;	
this	must	be	run	at	the	start	whenever	using	the	sortal	library;	to	enable	external	
descripFons,	input	a	list	of	strings,	where	each	element	is	the	name	of	a	descripFon	sort	
type	the	user	wishes	to	create

� 	78

draw_result

Draws	a	single	result	(idenFfied	by	the	index	input	'choice')	in	the	Rhino	workspace.	The	default	is	the	first	item	
of	the	ruleAppns	list.	When	a	reference	point	is	given	(tuple/list/vector/point),	the	shape	GUIDs	are	moved	to	
the	reference	point.	The	default	reference	point	is	the	origin.		

Syntax

sgi.draw_result(choice = 0, ruleAppns = [], refPoint =
Rhino.Geometry.Point3d(0,0,0), hide = True, layerNameMain = 'Default', shapeIds
= [])

Parameters

▪ choice:	Index	(integer)	of	chosen	result	from	list	of	rule	applicaFons	(tuple	of	agnosFc	dicFonaries	
coming	from	find_rule_appns_ag)		

▪ ruleAppns:	List	of	rule	applicaFon	tuples	of	agnosFc	dicFonaries	(Non-parametric:	(transformaFon	
matrix,	match,	result,	shape	a_er	applicaFon),	Parametric:	(match,	result,	shape	a_er	applicaFon))	
to	retrieve	the	shape	to	be	drawn	from	

▪ refPoint	(opFonal):	Tuple	/	list	of	integers	or	floats	/	vectors	/	points	(3Ds)),		

▪ hide:	Boolean	Value;	True	(default)	hides	the	resulFng	Rhino	geometries;	False	leaves	them	visible	
in	the	Rhino	Viewport	

▪ layerNameMain:	name	of	layer	to	draw	Rhino	GUIDs	of	result	on,		

▪ shapeIDs:	List	of	shape	GUIDs	of	original	shape	(if	these	are	to	be	deleted	and	replaced)	

Returns

▪ List	of	Rhino	Geometry	[shape	GUIDs]:	If	successful	

▪ None:	If	unsuccessful	or	inputs	are	incorrect	

Warnings & Errors

▪ Warning:	Choice	input	is	an	integer	greater	than	number	of	available	rule	applicaFons	

▪ ValueError:	No	rule	applicaFons	entered,	OR	target	layer	name	is	not	present	in	layer	names,	OR	
shapeIds	is	not	a	list	OR	value	of	hide	is	not	a	Boolean	value	

▪ TypeError:	choice	input	is	not	an	integer	OR	ruleAppns	is	not	a	list	OR	data	type	of	reference	point	
is	not	a	tuple/list	of	three	numbers/Rhino	point	

▪ KeyError:		

o If	the	number	of	elements	in	the	reference	point	tuple	or	list	is	greater	than	/	less	than	3		

o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	set	up	

Example

rule_name = ‘test_rule’

selected_application_index = 0

ruleAppns = sgi.find_rule_appns_ag(rule_name, ‘mainShape’, subshape = None,
Rhino.Geometry.Point3d(0,0,0))

newGUIDs = sgi.draw_result(selected_application_index = 0, ruleAppns, hide =
False, layerName = ‘TestLayer’)

� 	79

This	will	generate	the	new	GUIDs	of	a	single	rule	applicaFon	drawn	in	the	Rhino	workspace.	Since	‘hide’	is	set	to	
False,	the	result	will	be	visible	in	the	viewport,	and	stored	on	the	layer	called	‘TestLayer’.	

draw_results

Draws	all	the	resulFng	agnosFc	objects	of	the	ruleAppns	list	in	the	Rhino	workspace.	Each	result's	drawing	is	
drawn	on	top	of	one	another,	with	the	locaFon	of	the	ploLng	based	on	the	locaFon	of	the	original	shape	the	
rule	was	applied	onto.	

When	a	reference	point	is	given	(tuple/list/vector/point),	the	shape	GUIDs	are	moved	to	the	reference	point,	
but	are	sFll	drawn	on	top	of	one	another.	The	default	reference	point	is	the	origin.	The	Rhino	GUIDs	are,	by	
default,	hidden	as	soon	as	they	are	drawn	in	the	Rhino	viewport.	

Syntax

sgi.draw_results(rule_Appns, refPoint = Rhino.Geometry.Point3d(0,0,0), hide =
True, layerNameMain = 'Default', shapeIds = [], prnt = False)

Parameters

▪ ruleAppns:	List	of	rule	applicaFons	as	agnosFc	objects	in	tuples	resulFng	from	use	of	
find_rule_appns_ag	

▪ refPoint:	Rhino	GUID,	tuple	or	Rhino	point	geometry	where	results	will	be	plo6ed	in	reference	to	

▪ hide:	Boolean	value;	True	(default)	-	hide	Rhino	geometries	from	viewport,	False	-	show	Rhino	
geometries	in	viewport	

▪ layerNameMain:	Text	string;	layer	name	of	layer	where	resulFng	geometries	are	to	be	placed	

▪ shapeIDs:	List	of	Rhino	GUIDs	to	delete	and	to	be	replaced	by	Rhino	GUIDs	coming	from	
draw_results	

▪ prnt:	Boolean	value;	True	-	print	descripFon	individuals	belonging	to	resulFng	shape,	False	
(default)	-	descripFon	individuals	not	printed		

Returns

▪ List	of	Rhino	Geometry	[GUIDs]:	If	successful;	geometries	are	hidden	from	the	viewport	itself	

▪ None,	if	funcFon	is	unsuccessful	or	inputs	are	incorrect	

Warnings & Errors

▪ ValueError:	No	rule	applicaFons	entered	OR	target	layer	name	is	not	present	in	layer	names	OR	
shapeIds	is	not	a	list	OR	value	of	hide	is	not	a	Boolean	value	

▪ TypeError:	If	ruleAppns	is	not	a	list	OR	data	type	of	reference	point	is	not	a	tuple/list	of	three	
numbers/Rhino	point	

▪ KeyError:		

o if	the	list	of	rule	applicaFons	is	empty	

o If	'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	set	up	

� 	80

Example

rule_name = ‘test_rule’

rule_Appns = sgi.find_rule_appns_ag(rule_name, ‘mainShape’, subshape = None,
Rhino.Geometry.Point3d(0,0,0))

new_GUIDs = sgi.draw_results(rule_Appns, Rhino.Geometry.Point3d(0,0,0), hide =
True)

This	will	generate	all	the	ruleAppns	in	the	Rhino	workspace	and	draw	them	on	top	of	one	another,	but	they	will	
immediately	be	hidden	from	the	viewport	as	‘hide’	is	set	to	True.	To	show	the	GUIDs:	

rs.ShowObjects(new_GUIDS)

find_rule_appns_ag

Finds	rule	applicaFons	from	a	subshape	and	shape,	or	from	a	set	of	GUIDs.	It	returns	a	list	of	tuples	of	agnosFc	
dicFonaries,	corresponding	to	the	LHS	shape	(the	match	within	the	main	shape),	the	RHS	shape	(the	result	a_er	
the	match	shape	has	been	replaced	with	the	RHS	of	the	rule),	and	the	enFre	shape	a_er	the	rule	has	been	
applied	onto	it.	In	cases	where	the	rule	is	non-parametric,	the	transformaFon	matrix	is	also	returned;	if	the	rule	
is	parametric,	no	transformaFon	matrix	is	returned.	

Syntax

sgi.find_rule_appns_ag(chosenRule, shape, subshape = None, refPoint =
Rhino.Geometry.Point3d(0,0,0))

Parameters

▪ chosenRule:	Rule	name	as	text	string	

▪ shape:	Name	of	main	shape	as	text	string	as	recorded	in	sortal	library's	form	register	OR	agnosFc	
dicFonary	pertaining	to	shape	OR	Rhino	GUIDs	composing	shape	(predicates	and	direcFves	will	
not	be	considered)	

▪ subshape:	Name	of	subshape	as	text	string	as	recorded	in	sortal	library's	form	register	(opFonal)	
OR	agnosFc	dicFonary	pertaining	to	subshape	OR	Rhino	GUIDs	composing	subshape	(predicates	
and	direcFves	will	not	be	considered)	

▪ refPt:	GUID	of	point,	tuple,	or	Rhino	Geometry	point	of	reference	point	which	will	serve	as	the	
'origin'	with	which	shapes	will	be	plo6ed	in	respect	to	(in	principle,	a	vector;	opFonal)	

Returns

▪ List	of	applicaFons	(in	tuple	form)	as	based	on	match	generated	by	subshape	or	main	shape,	if	no	
subshape	input	is	given	

▪ An	empty	list,	if	no	rule	applicaFons	are	found	

▪ Each	element	of	the	list	is	a	tuple	in	the	following	format:	

				a.	Non-parametric:	

(<transformaFon	matrix>,	<LHS	match	in	agnosFc	form	based	on	subshape>,	<RHS	result	
in	agnosFc	form>,	<Main	Shape	a_er	rule	applicaFon	in	agnosFc	form>)	

				b.	Parametric:	

� 	81

	(<LHS	match	in	agnosFc	form	based	on	subshape>,	<RHS	result	in	agnosFc	form>,	<Main	
Shape	a_er	rule	applicaFon	in	agnosFc	form>)	

Warnings & Errors

▪ ValueError:	If	rule	name	is	not	present	in	the	rule	register	or	if	the	input	for	chosenRule	is	neither	
a	rule	object	nor	a	rule	name	

▪ TypeError:	If	iniFal	shape	or	subshape	is	not	a	list	of	GUIDs	or	a	text	string	or	an	agnosFc	
dicFonary	or	is	empty	

▪ KeyError:	If	iniFal	shape	or	subshape	input's	name	is	not	present	in	the	form	register	or	if	
'rhino_shapes_c'	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	set	up	

▪ Warning:	If	subshape	is	not	part	of	shape	->	exits	funcFon	and	returns	False	

Example

rule_name = ‘test_rule’

mainshape_name = ‘new_shape’

subshape_name = ‘new_shape_sub’

refPoint = rs.GetObject(‘Select reference point’)

rule_appns = sgi.find_rule_appns_ag(rule_name, mainshape_name, subshape_name,
refPoint)

Depending	on	if	the	rule	corresponding	to	‘rule_name’	is	parametric	or	non-parametric,	the	rule_appns	list	will	
contain	either	three	or	four	items	per	element	of	the	list,	corresponding	to	each	rule	applicaFon.	

An	empty	list	is	returned	if	no	rule	applicaFons	can	be	found.	

create_shape_ag

Creates	a	sortal	shape	from	a	collecFon	of	Rhino	GUIDs.	It	registers	the	shape	according	to	the	input	for	the	
shapeName	variable	in	the	sortal	library.	The	funcFon	returns	the	predicate/direcFve	dicFonaries.		

Syntax

sgi.create_shape_ag(shapeName = None, shapeData = None, descriptions = '',
classification = None, refPoint = rg.Point3d(0,0,0), prnt = False)

Parameters

▪ shapeName:	Name	of	shape	(text	string)	

▪ shapeData:	List	of	Rhino	GUIDs	or	an	agnosFc	dicFonary	that	will	compose	the	sortal	shape;	if	an	
agnosFc	dicFonary	is	given	as	input,	then	any	input	to	the	descripFons	string	will	be	ignored.	

▪ descripFons:	OpFonal	text	string	of	descripFons	to	include	in	the	sortal	shape	(if	these	are	not	yet	
present	in	the	agnosFc	dicFonary),	e.g.	

'label1@("A2", 1, 1234);("A3", 4, 1234)|label2@("A1", 1, 1234)|
label2@("A9", 8, 1234)'

where	there	are	two	descripFon	types,	'label1'	(followed	by	an	ampersand	“@”;	2	individuals	
separated	by	a	semicolon	“;”),	and	'label2'	(2	individuals);	declaraFon	of	different	descripFon	
types	and	their	individuals	is	separated	by	a	verFcal	dash	“|”	

� 	82

▪ classificaFon:	Name	of	target	disjuncFve	sort	type	(text	string);	this	sort	type	must	already	be	
present	in	the	sort	register	under	the	compound	sort	'rhino_shapes_c'	

▪ refPoint:	Reference	point	to	serve	as	'origin'	point	for	shape;	the	default	origin	point	is	0,0,0	

▪ prnt:	Boolean	value	(True/False);	True	-	prints	the	resulFng	sortal	shape	according	to	the	output	of	
the	'printE'	command	in	the	sortal	library,	False	(default)	-	does	not	print	anything	

Returns

▪ A	sortal	shape	using	the	disjuncFve	sort	type	specified	in	the	‘classificaFon’	variable	is	created	in	
the	form	register	and	stored	under	the	contents	of	‘shapeName’.	

▪ This	funcFon	returns	the	predicates	and	direcFves	dicFonaries	obtained	from	the	Rhino	geometry	
input	‘shape_data’.	They	will	have	the	following	keys	inside:	

▪ predicates:	Predicates	dicFonary	

{'max': [], 'shortest': [], 'longest': [], 'bound': [], 'nolabel':[]}

▪ direcFves:	DirecFves	dicFonary	

{‘pointOL’:[], ‘distance’:[], ‘normal’:[]}

Warnings & Errors

▪ TypeError:	If	shapeName	input	is	not	a	text	string,	or	if	shapeData	input	is	not	an	agnosFc	
dicFonary	or	a	list	of	Rhino	GUIDs,	or	if	shapeData	has	any	elements	that	are	not	Rhino	GUIDs	
inside	

▪ Warning:	If	descripFons	input	is	not	a	text	string	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	
set	up	

Example

shape_data = rs.GetObjects(‘Select shape’)

shape_name = ‘test_shape’

descriptions = 'label1@("A2", 1, 1234);("A3", 4, 1234)|label2@("A1", 1, 1234)|
label2@("A9", 8, 1234)'

classification = ‘N3D’

This	uses	the	non-parametric	3D	disjuncFve	default	sort	type	within	rhino_shapes_c	(called	‘N3D’)	if	
sgi.sortal_setup()	was	used	to	do	sortal	library	setup	or	a	similarly	named	sort	exists	in	the	sort	register.	

predicates, directives = sgi.create_shape_ag(shape_name, shape_data,
descriptions = '', classification)

convert_to_agnos9c

Converts	a	list	Rhino	GUIDs	to	an	agnosFc	dicFonary	based	on	the	structure	of	the	target	sort	named	in	the	
‘classificaFon’	variable	(this	sort	type	must	have	already	been	created	and	should	be	present	in	the	register).	If	
descripFons	are	given,	then	it	will	include	those	descripFons	into	the	agnosFc	dicFonary.	By	default,	the	origin	
is	the	reference	point.	However,	the	list	of	Rhino	GUIDs	may	be	processed	with	an	opFonal	reference	point	
other	than	the	origin		

� 	83

Syntax

sgi.convert_to_agnostic(shapeRhino = [], classification = None, descriptions =
'', refPoint = Rhino.Geometry.Point3d(0,0,0))

Parameters

▪ shapeRhino:	List	of	Rhino	GUIDs	

▪ classificaFon:	Target	sort	type	for	the	shape	

▪ descripFons:	OpFonal	text	string	of	descripFons	to	include	in	the	sortal	shape	(if	these	are	not	yet	
present	in	the	agnosFc	dicFonary),	e.g.	

'label1@("A2", 1, 1234);("A3", 4, 1234)|label2@("A1", 1, 1234)|
label2@("A9", 8, 1234)'

where	there	are	two	descripFon	types,	'label1'	(followed	by	an	ampersand	“@”;	2	individuals	
separated	by	a	semicolon	“;”),	and	'label2'	(2	individuals);	declaraFon	of	different	descripFon	
types	and	their	individuals	is	separated	by	a	verFcal	dash	“|”	

▪ refPoint:	Reference	point	which	the	coordinates	of	the	shape	will	be	subtracted	from;	this	
funcFons	as	the	'origin'	of	the	shape,	and	can	be	used	for	defining	shapes	that	compose	rule	sides	
so	that	they	can	be	drawn	side	by	side	one	another	in	the	Rhino	viewport	

Returns

Four	outputs,	in	the	following	order:	

▪ AgnosFc	object	form	of	[Rhino	GUIDS	+	descripFon	type;	classificaFon	is	used	as	the	key	for	the	
dicFonary	if	there	is	more	than	one	type	of	disjuncFve	sort	within	'rhino_shapes_c'	that	is	not	a	
dummy	disjuncFve	sort]	as	agnosFc	dicFonary	

▪ DicFonary	of	GUIDs	corresponding	to	geometry	stored	in	agnosFc	object,	according	to	their	target	
sort	type	

▪ DicFonary	of	predicates	

▪ DicFonary	of	direcFves	

Warnings & Errors

▪ TypeError:	If	shapeRhino	is	not	a	list	of	Rhino	GUIDs	OR	if	‘descripFons’	is	not	None	or	a	text	string	

▪ Warning:	If	conversion	was	unsuccessful	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	
set	up	

Example

shape_data = rs.GetObjects(‘Select shape’)

classification = ‘P3D’ # parametric 3D disjunctive sort

descriptions = 'label1@("A2", 1, 1234);("A3", 4, 1234)|label2@("A1", 1, 1234)|
label2@("A9", 8, 1234)'

refPoint = Rhino.Geometry.Point3d(10,10,0)

shape_agnostic, shape_guids_dict, predicates, directives =
sgi.convert_to_agnostic(shapeData, classification, descriptions, refPoint)

� 	84

maximalize_ag

Maximalizes	an	agnosFc	dicFonary	or	list	of	Rhino	GUIDs.	In	the	case	of	inpuLng	a	list	of	Rhino	GUIDs,	the	
output	is	automaFcally	a	list	of	the	maximalized	Rhino	GUIDs.	

Syntax

sgi.maximalize_ag (shape, target = None, rhino = False, hide = False, delete =
False)

Parameters

▪ shape:	Shape	data	in	the	form	of	a	list	of	Rhino	GUIDs	(target	disjuncFve	sort	for	maximalized	
must	be	provided)	OR	an	agnosFc	dicFonary	OR	the	shape	name	as	a	text	string	

▪ target:	Target	disjuncFve	sort	for	shape	to	be	maximalized	(text	string)	

▪ rhino:	Boolean	value	(True/False);	True	-	returns	list	of	Rhino	GUIDs	corresponding	to	maximalized	
shape;	False	(default)	-	returns	agnosFc	dicFonary	form	

▪ hide:	Boolean	value	(True/False);	True	-	hides	Rhino	geometry	output	from	viewport;	False	
(default)	-	leaves	Rhino	geometry	output	visible	in	viewport	

▪ delete:	Boolean	value	(True/False);	if	the	inputs	are	a	list	of	Rhino	GUIDs,	then	True	deletes	the	
inputs,	and	False	(default)	leaves	the	inputs	sFll	in	the	Rhino	viewport	

Returns

▪ maxShape:	Maximalized	agnosFc	dicFonary/list	of	Rhino	geometries	

Warnings & Errors

▪ TypeError:	If	type	of	input	is	invalid	(i.e.	not	a	list	of	Rhino	GUIDs,	an	agnosFc	dicFonary	or	a	shape	
name	text	string)	

▪ ValueError:	If	input	is	an	empty	list	or	if	shape	name	doest	not	exist	in	the	form	register	

▪ KeyError:	If	‘rhino_shapes_c’	is	not	present	in	the	sort	register,	i.e.	sortal	library	has	not	yet	been	
set	up	

Example

The	funcFon	call	below	returns	the	maximalized	agnosFc	dicFonary	version	of	‘shape_agnosFc’.	If	there	is	only	
one	acFve	geometric	disjuncFve	sort	in	‘rhino_shapes_c’,	then	the	variable	target	can	be	le_	as	its	default	
value,	as	below:	

shape_agnostic, shape_guids_dict, predicates, directives =
sgi.convert_to_agnostic(shapeData, classification, descriptions, refPoint)

sgi.maximalize_ag (shape_agnostic)

This	funcFon	call	draws	the	maximalized	shape	corresponding	to	the	data	inside	‘shape_agnosFc’	in	the	Rhino	
viewport,	and	hides	them	a_erwards;	it	returns	the	list	of	GUIDs	corresponding	to	this	maximalized	shape.	

sgi.maximalize_ag (shape_agnostic, rhino = True, hide = True)

This	funcFon	call	draws	the	maximalized	shape	corresponding	a_er	convert	the	data	inside	‘shape_rhino’	to	
sortal	data,	and	leaves	the	new	drawing	visible	in	the	viewport;	it	returns	the	list	of	GUIDs	corresponding	to	this	
maximalized	shape,	and	deletes	the	Rhino	GUIDs	of	the	input	list	‘shape_rhino’	

shape_rhino = rs.GetObjects(‘Select shape data’)

� 	85

sgi.maximalize_ag(shape_rhino, hide = False, delete = True)

sortal_setup

Sets	up	the	sort	types	in	the	sortal	library,	as	well	as	any	external	descripFon	sort	types,	according	to	the	list	of	
string	inputs	in	the	variable	'descripFons'.	The	code	in	this	funcFon	also	serves	as	an	example	on	how	to	create	
sorts	through	hardcode,	from	primiFve	to	compound	sort	types	and	to	imbue	geometric	primiFve	sorts	with	
a6ributes.	

It	may	be	run	without	any	inputs;	this	sets	up	a	default	compound	sort	with	two	disjuncFve	sorts	inside,	one	of	
which	is	a	dummy	disjuncFve	sort	composed	of	two	dummy	descripFon	sorts.	This	dummy	disjuncFve	sort	is	
removed	from	the	compound	sort	'rhino_shapes_c'	once	other	sort	types	are	introduced,	when	using	'read_sdl'	
to	import	SDL	file	data.	

All	geometries	(points,	line	segments,	plane	segments,	circles,	ellipses,	circular	arcs,	Bezier	curves)	are	enabled	
in	this	default	disjuncFve	sort	as	non-parametric	geometries,	if	no	input	is	given.	Due	to	the	limitaFons	of	the	
library,	parametric	2D	and	3D	circular	and	ellipFcal	arcs	are	not	available.	

Labels,	weights,	descripFons	(one	type	called	'desc'),	weight255	(for	grayscale),	enumeraFves	and	colors	are	
enabled	as	a6ributes	to	all	the	non-parametric	geometries.	As	for	external	descripFons,	they	may	be	added	to	
the	default	setup	by	inpuLng	a	list	of	text	strings	corresponding	to	the	names	of	the	intended	descripFon	sort	
types.	

The	names	of	the	default	sort	types	in	any	resulFng	agnosFc	dicFonary	that	follows	from	using	sgi.sortal_setup	
are	as	follows:		

▪ Default:	“N3D”		

▪ Compound	sort:	rhino_shapes_c	

▪ DisjuncFve	sort:	rhino_shapes	

▪ A6ribute	sorts	under	disjuncFve	sort:	

o Points	-	'points'	

o Line	segments	-	'line_segments'	

o Plane	Segments	-	'plane_segments'	

o Circles	-	'circles'	

o Ellipse	-	'ellipses'	

o Circular	arcs	-	'arcs'	

o Bezier	Curves	-	'bezier_curves'	

o A6ributes	enabled	for	all	sorts:	label,	descripFon,	color,	weight,	weight255,	enumeraFve		

Syntax

sgi.sortal_setup(descriptions = [], parametric = False, dimension = True)

Parameters

▪ descripFons:	List;	list	of	descripFon	sort	type	names	

� 	86

▪ parametric:	Boolean;	indicates	if	sort	types	are	to	be	non-parametric	or	parametric;	default	is	
False	(non-parametric)	

▪ dimension:	Boolean;	indicates	if	sort	types	are	to	be	2D	or	3D;	default	is	False	(3D)	

Returns

▪ 	 True:	If	successful	

▪ 	 False:	If	unsuccessful	

A	sort	based	on	the	condiFons	given	to	‘sortal_setup’	is	created	in	the	back	end	and	stored	under	the	
compound	sort	‘rhino_shapes_c’.	If	the	geometric	disjuncFve	sort	is	the	only	one	acFve,	it	is	stored	with	a	
dummy	disjuncFve	sort	composed	of	two	dummy	descripFon	sorts	in	the	compound	sort.	The	following	names	
are	given	to	the	disjuncFve	sorts	based	on	the	given	parametric-dimension	combinaFons:	

o N3D	–	non-parametric,	3D	

o N2D	–	non-	parametric,	2D	

o P3D	–	parametric,	3D	

o P2D	–	parametric,	2D	

Warning/Errors:

▪ None	

Example

When	creaFng	a	parametric	3D	sort	with	no	external	descripFons	

sgi.sortal_setup([], True)

OR	when	enabling	external	descripFon	types	

sgi.sortal_setup([‘description_1’, ‘description_2’])

This	will	include	two	descripFon	sort	types,	one	named	‘descripFon_1’	and	the	other	named	‘descripFon_2’	in	
the	resulFng	disjuncFve	sort	called	‘N3D’.	

� 	87

	About the SortalGI API
	SortalGI Installation and Setup for Rhinoceros
	1. Installing the SortalGI library
	2. Linking the SortalGI library to Rhinoceros
	3. Setting up the SortalGI library in Rhinoceros
	4. Importing future for Python 3.5 to Python 2.7 compatibility
	API
	Import notation
	Summary of all methods
	apply_all_together
	apply_flow
	check_precision
	convert_shape
	convert_sort
	create_flow
	create_rule
	create_shape
	default_precision
	draw_rule
	draw_shape
	extract_shape
	find_rule_appns
	get_rule_lhs
	get_rule_rhs
	get_rule_description
	maximalize
	move
	overwrite_sdl
	part_of
	read_sdl
	redraw
	save_sdl
	set_flow_description
	set_flow_name
	set_precision
	set_rule_description
	set_rule_name
	set_shape_name
	Rhino Methods
	Import notation
	Summary of all methods
	add_bound_line
	add_color
	add_description
	add_distance
	add_embeds
	add_enum
	add_label
	add_longest_line
	add_max_line
	add_no_label
	add_normal
	add_point_on_line
	add_shortest_line
	add_void
	add_weight
	analysis
	clear_shape
	delete_description
	delete_label
	delete_pred_dir
	delete_tag
	clear_everything
	tag
	FAQ
	Annex A: About Sortal Structures
	Sortal structures and behavioral categories
	Data types and characteristic individuals
	Annex B: About Shape Rules and Description Rules
	Shape rules
	Descriptions and description rules
	Parametric descriptions
	Description literals
	Description tuples
	Description parameters
	Parameter conditionals
	Numerical expressions
	String expressions
	Tuple expressions
	Functions
	References
	Shape element types and their available properties
	A formal notation for descriptions
	Description functions
	Numerical functions
	String functions Tuple functions
	Annex C: Description of Sortal Imports
	Annex D: Legacy Methods
	Summary of all methods
	draw_result
	draw_results
	find_rule_appns_ag
	create_shape_ag
	convert_to_agnostic
	maximalize_ag
	sortal_setup

