SortalGl API for Rhino

User Manual

Manual update 19 August 2018
Written by Bianchi Dy and Rudi Stouffs

Table of Contents

ADOUL The SOITAIGI AP ...ttt st e et e s b e e bt e s be e e bt e e sbb e e bt e e sabeeeateesabeesaneesneenane 4
SortalGl Installation and Setup for RNINOCEIOS. .......cocuii ittt st et e s 6
1. INStalling the SOrtalGl HIary ....ccoo it e et e e st ee e e saae e e e sntaeesenaeeessnseeeean 6

2. Linking the SortalGl [ibrary t0 RNINOCEIOS.......cccuuiiiieiiiee e eee et eestte e s e e e e e e e s s aaeeessnaeeeesnreeeennes 6

3. Setting up the SortalGl library in RNINOCEIOS .......cuuiiiieiiii ettt e e et e e e e e e s aae e e snneeas 7

4. Importing future for Python 3.5 to Python 2.7 compatibility .......cccceeeiiiiiicieeecee e 8
APL ettt E et s e e sttt SRRt R e R e e Rt e Rt e Rt e et e et et e ae e eae e e r e e e r e e re e reene 9
[ aqY ool Vo] - 1 n o] o H PP 9
Y410 YA o T 1 L2 0 =3 1 T Yo £ SR 10

EE o] o] AV 11 o == o 1T S 12

o] o 1Y 1 (o 1Y SRS ER SRR 14

(o] o =Tol S o =Tol 1Y Lo AP U UUR 14

oo 01Y/=T o ] - o TIPS T PO PR PPPRU PP OPPROPPOIOt 15

[olo] a1 VZ=] o AT o T T T O PP PPPPPPPPPPPPPPRY 16

Lo =T Y (< 1 (oL PSRN 17
CIEATE_TUIE ..ttt et e e e ettt e e eeabt e e e eetbeeeeebaeeeeassaeeesabaeaeastaseeanssaaeeantesaeanstaeesansssaesassanaans 18

Lo | (] A T oL OO P PP UPPOPPTOPPROPPIOt 19

(o 123 = 10 Ll o T Yol T T o SR 20

Lo L 1Y 01 21

Lo [ 1Y 4 F= = IPEESPSR 22

(O = (ot ] 4 = TS PP 22

Ll Lo I V] LT T ] o S P TP P PP PO PRRUPROTPPTOPP 23

= A 0] LY 1TSS 24

oL A V] (=Y o o LY SRS PRPN 25

oL A V] (Yo [T g ] o] o] AU USRS RURR 26
INIAXIMATIZE ..ttt ettt e bt e sa b e e bt e st e e sa bt e et e s b e e e bt e e b e e e ne e e ebb e e ae e sabeeeaneesareeeareas 26

L T0 NPT 27



=TT I | U USSR 30
FEOMAW ..ttt ettt ettt ettt et h e et e st e et e s b et e bt e e be e e e ab e e sa b e e eab e e sa b e e e ab e e s e b e e e be e e as b e e enee e sabeeeab e e sbeeeabeeenneeneees 31
SAVE_S ettt s b e h e e b et e et e e s aE e e et e s be e e bt e e b et e bt e e enbe e et e e sareeeanee s 31
L =1 o)LV [T | o) o PSR 32
EY =] a1 (o) LV F=1 0 1 L= USSR 33
LY=L o (= Tol ] o 1S PTPPPPPRPPPPRY 33
LY=L A ] (Y [T ol o) u o o FO PR PPURRRNS 34
L= A U1 T o= T2 SR 34
LY=L o= o YT T 1 1. [ SR 35
RRINO IMEENOMAS ...ttt ettt et e ae e s bt e s b e b e e s b e e bt e bt et e enb e e st e esseesnesbnennnesaeeneee 36
[aaToTo] ol To) 1 u o] o H 36
SUMMATY OF @l METNOUS ...ttt sttt ettt e eat e sabesbeesbeesbeesbeebeeabeeas 37
=T Lo I Yo 10T e I L1 oY= UPUPR 39
Lo [o [ oo [o] SRR TP O S TP PP PROPPPTOPUPRPP 39
E= o [ e 1Yol o u (o o TSR 40
= Lo e 1151 - [ ol YRR 41
F= o Lo I Y0 ] o1=To SRR UPRRROPPPRN 41
F= Lo Lo I =T o 0T o s VO UUPRRS 42
e [o I 1 o 1= HS T O T S TSP OO PROPPPTOPRPRPP 43
= o Lo IR Fo g Y=Yy 1o TSR 43
F=To Lo 0 0 F= G L 1RSSR PSRN 44
F=To Lo I o T TN =1 1= USRS 44
e [o I aTe ] oo 0 1 AT TP PRSPPI PPTOPROUPTOPPPOPPPON 45
E= o Lo R o To 1o Nl o o T 112 TSR 46
= Lo Lo TR o T Y Xy o 11 TS PRRNS 47
= o Lo Yo o S USSR 47
E= Lo Lo IRV Y= F=4 o U PUUPS 48
ANAIYSIS <ttt ettt h e et e st e e et e e s b e e e be e e b e e e bt e e bbeeehe e e sabeeenreesreenares 49
(ol LT T [ TP 49
Lo 1= 1y T L=t ol 4o n o o HN USSR 50
Lo L=l 1 =T =1 o= O USSR PRR 51
(o 11 L= d I Y=L I LT U PURR 51
o 1= 1= LT - V- PSSR 52
[ol L= T LY=L A 011 =S SRPRRN 53
L=< TP 53



ANNEX A2 ADOUL SOITAl SEFUCTUIES .....viiiiiieeieee ettt ettt sa e b bt s b e b e et e e bt et e e st e eatesbaesbeenneen 56
Sortal structures and behavioral CatEGONIES. .........uuiiiiiie e e e e e et r e e e e e e e sabbareeaeeeenan 56
Data types and characteristic iNdiVIAUAIS...........uuiiiiiie e et e e e e e s rr e e e e e e e enans 59

Annex B: About Shape Rules and Description RUIES........ccooiiiiiiee ettt e e e arr e e e e e e e 61

Shape rules 61

Descriptions and deSCrPHION FUIES.....c...eieiiiiiie ettt ettt s e e sa e s b e st eeebeesbeeeaeeens 62
Parametric dESCIIPTIONS .o..eieiieeeiee ettt ettt et s bt e bt e e bt e sat e e sab e sabeesabeeeabeesabaeesseeesnneennneens 62
[DT=T Yol g1 oo o I L1 =T = KOS UPRPRRN 62
(B L=TY ol g oo o IR U] o] 1= SRR 62
(DI ol g oY ule] gl o T 1= 1 4 =1 £=] (3P 63
Parameter CONAITIONAIS. ...ccc.uii ittt et e b e ab e sab e e st esbeesabeesbeesneas 63
N UL Yo o TN o =11 (o] o TSR 63
Y == o =T Lo o PR PPRRN 64
O] o] L=l o T =X [ T o LSS UUURRNt 64
FUNCEIONS 1.t ettt e e e s bt e e s b e e e s b e e e s sb et e s e sab e e e s snaeeessanaeeseas 64
RETEIEINCES ..ttt ettt et b e e bt e s et e s bt e st e e s a bt e e bt esa b e e e bt e e b e e e nhe e e ebbeeeneeesabeeeareesbeeeareas 65
Shape element types and their available Properties .......cccveccieiieciee e 65

AR eTgaaF:WaTe] e=1a loTa T oY e [XYol 4 o] a Lo} o -3 USRS 67

[DT=TYol g oo o I {1 o Tt n o o -3 SRR 71
NUMEFICAl FUNCHONS.....eeiie ettt r e r et e ne s e saeesmeeeneesneenreens 71

String functions

TUPIE FUNCHIONS .. ettt e sh e st s bt e st e e st e e s bt e sabeeeabeeesnbesneeesaneennees 72
Annex C: Description Of SOItal IMPOILS ...ciiiuiiii et et e e e sree e e et e e s s ate e e snseeeeassteeesnssaeeesnsnnaean 74
ANNEX D: LEBACY MEBLNOMAS ...ceeeiiii ettt et e e e e e et e e e s ba e e e e ttaeeeeassaeeentaeeaasteeesansseeessseeeaasseeeannes 78

SUMMATY OF @l1 METNOAS ....eiiitiee et e et e e et e e e e e ba e e e e s ataeeeeasbaeessabeeaeessaeeeassaeeesasbeaaann 78

AIAW_TESUI ..ttt sttt st e s bt e s bt e s bt e b e et e e be et e eaeeeatesaeeebeesbeenbe e be e beenees 79

(o [ NV (T U1 L £ RPUPR 80

Lila T I AU LI T o Lo T TSR 81

(o LT (T (T o LTI -8 S SRPRRNS 82

[olo ] g \VZ=] A (o T 1= 0 [0 1) n (ol PP P TP PPPTP 83

MNAXIMIAIIZE A c.uuiiiiiiiiiee ettt et ettt e e et e e e et e e e e e tteeeeeteeeeeaabaeaeetbaeeeasaaeeaasbaaeaabbeeeeantaaeeasbeaaeantaeaeanes 85

o] o = | 11 (U] o BT PO PP P PO PPTOPUOUPPTOPPPOPPPO 86



About the SortalGl API

A shape rule combines a specification of recognition and manipulation. A shape rule is commonly specified in
the form Ihs — rhs, where the left-hand-side (/hs) of the rule specifies the pattern to be recognized and the
manipulation of the current shape then involves replacing the recognized /hs by the right-hand-side (rhs) of the
shape rule in the shape under investigation. Recognition necessarily applies under some transformation, for
example, a similarity transformation, and the resulting manipulation must occur under the same transformation
for both /hs and rhs. That is, applying a rule a — b to a given shape s involves determining a transformation f
such that f(a) is a part of s (f(a) < s), following which s is replaced by s — f(a) + f(b).

Two types of rules are distinguished, parametric rules and non-parametric rules. The latter are the easiest to
understand. In the case of a non-parametric rule, the pattern specified by the /hs of the rule must match a part
of the given shape under a similarity transformation (translation, rotation, reflection and/or uniform scaling).
That is, when matching for a square of line segments, any square of line segments from the given shape will do,
even if these line segments extend beyond the corner points of the square. The same applies when matching
for a rectangle, however, only rectangles with the same ratio between length and width will be matched.

A parametric rule matches a much larger variety of shapes. In principle, when matching a triangle of line
segments, any triangle of line segments in the given shape will be matched, irrespective of its shape. The
corresponding transformation is a topological transformation though there is no mathematical representation
for such a transformation (unlike for a similarity transformation). However, some constraints do apply.
Specifically, parallel and perpendicular lines are automatically identified in the /hs and considered as constraints
for matching. Thus, specifying a right-angled triangle as the /hs will only match right-angled triangles in the
given shape, however, specifying an equilateral or isosceles triangle as the /hs will have no effect, any triangle in
the given shape will be matched.

A shape grammar generally defines a collection of rules together with an initial shape; then, the language
defined by a shape grammar is the set of shapes generated by the rules from the initial shape. However, from a
user’s point of view, any collection of rules that serves a particular purpose can be considered a shape
grammar, whether or not it requires a particular initial shape or, instead, can be applied to a wide variety of
(initial) shapes.

Sortal grammars extend on shape grammars. Where shape grammars commonly rely on a combination of line
segments and labelled points, sortal grammars take a modular representational approach, allowing for a wide
variety of geometric and non-geometric elements to be included in the specification of rules and grammars.
Sortal grammars utilize sortal structures as representational structures, where these structures are defined as
formal compositions of other, primitive, sortal structures, termed sorts. As such, sortal grammars constitute a
class of formalisms for design grammars and benefit from the fact that every component sort specifies a partial
order relationship on its individuals and forms, defining both the matching operation and the arithmetic
operations for rule application.

A shape grammar interpreter is the engine that supports the application of shape rules, including recognition
and manipulation. The SortalGl API for Rhinoceros provides access to the SortalGl sortal/shape grammar
interpreter and makes (part of) its functionality available within the Rhino Python programming environment. It
allows the user to create and apply shape and description rules by merging the capabilities of Rhinoceros in
drawing shapes and storing user data and descriptions onto geometry with the computational capabilities of
the shape grammar interpreter.



APl development by Bianchi Dy
System development by Bui Do Phuong Tung
Under the supervision of Rudi Stouffs



SortalGl Installation and Setup for Rhinoceros

The following sections describe the step-by-step process of installing the SortalGl grammar interpreter and its
API onto Rhinoceros.

1. Installing the SortalGl library

Run the ‘setup’ widget inside the folder ‘sortal-setup’. In addition to installing the ‘sortal’ library, this will install
packages such as ‘future’, ‘enum’ and ‘mpmath’ in the right location, which are necessary for compatibility
between IronPython and the SortalGl API.

When prompted for Administrator Access by the ‘setup’ batch file, select ‘Yes”. Wait for the packages to finish

installing.

Alternatively, if you are unable to run the ‘setup’ widget, you may manually copy-paste the files in their
respective locations:
= site-packages > all files inside

O  Copy-paste the content of the folder ‘sortal-setup\site-packages) into the location
C:\Program Files\Rhinoceros 5 (64-bit)\Plug-ins\lronPython\Lib\site-packages or equivalent on
your computer

= sortal-packages > sortal

O Copy-paste the folder ‘sortal’ (inside ‘sortal-setup\sortal-packages) into the location C:
\Program Files\Rhinoceros 5 (64-bit)\Plug-ins\IronPython\Lib\ or equivalent on your computer

2. Linking the SortalGl library to Rhinoceros

=> Open Rhino

-> Type EditPythonScript inthe Rhino command box

=> In the Rhino Python Editor window, select ‘Options...” from the Tools menu

- Add the Plug-ins\lronPython\Lib\site-packages folder of your Rhino installation folder into the
'Module Search Paths'

> Switch from the ‘Files’ tab to the ‘Script Engine’ tab (in the Python Options window)

=> Check the ‘Frames Enabled’ option and click ‘OK’

> Close Rhino completely and relaunch it for the changes to take effect



ey o1 ENe  Sont Engre Hed el by Jow Dogre
Mok e Somny Pt
C\Pegen Sed Rwrecets | 0S4 OAg e beaDaben' U b Fames Sratlec
Lhart ‘28 Jop dats' Faaring McNedd Fhrocece S 0 Pgea lorfyton 333050
et 08 0 Mty Faarw s MoNawd Rrweceos S T aogtt
Fogam "ser Mwocens | 0 G4 Fugex nferen o e oecages
>

Ty O ke Camin WEOMm Lena U ANON

3. Setting up the SortalGl library in Rhinoceros

Before running any SortalGl APl or Rhino API methods, it is necessary to set up the SortalGl library first. This
involves defining the sorts (sortal structures) that will be used. There are two ways to do this. Both ways refer to
the folder ‘sortalgi’, which can be found in the folder ‘demos\Rhino demo’. All SortalGl API functions can be
found in ‘sortalgi’.

a. Run the default setup script by importing the SortalGl APl into your code:
import sortalgi as _sgi
_sgi.sortal setup()
To ensure that this script works, save it in the same folder hierarchy level as the ‘sortalgi’ folder. To run

the script, use the ‘Reset engine and debug’ option in the Rhino Python Editor, found where the
box indicates in the picture below.

P-!' -G m

See if you get the response ‘Setup complete’ in your Python Editor window, in which case the sortal
library and API functions are now ready for use. Note that any scripts run after ‘sortal_setup()’ is called
that use Sortal API functions must be run using the green Play button or the ‘Run Script (no debug)’
option, indicated by the green box. This prevents the SortalGl library from refreshing completely and
maintains previously set up sorts.

The ‘sortal_setup’ function is explained in Annex D: Legacy Methods, it is considered a legacy function
that you can use as is, or you can customize it for your own purpose (see ‘sortalgi\_init_.py’ for some
additional explanation and its implementation). Note that if you customize ‘sortal_setup’ or define
your own script to define the sorts (sortal structures) for the SortalGl grammar interpreter, you must
ensure that the highest tier sort is a compound sort named ‘rhino_shapes_c’. All SortalGl API functions
refer to the compound sort named ‘rhino_shapes_c'.

b. Upload a Sortal Description Language (SDL) file by using the function ‘read_sdl’ from the API
functions:



import sortalgi as _sgi

_sgi.read sdl(<sdl file name>)

Where <sdl file name> is the SDL file name with a “.sdl’ extension. This input must be a text string, and
may include a specification of the location of the SDL file if it is not located within the same folder as
the active Python code. However, any slashes must be replaced with double slashes. For example:
_sgi.read sdl (McNeel\\Rhinoceros\\5.0\\scripts\\sortal 3D\\demo scripts\
\rhino demo\\sortalgil\sortal lib api)

The format and notation of the Sortal Description Language (SDL) is not explained in this document. If
you are interested in more information about this, you are welcome to investigate an example SDL file
(included in some of the Rhino demos) or you may find some (incomplete) information at http://
www.sortal.org/structures/SDL/index.html

If the highest tier sort defined inside the SDL file is not a compound sort named ‘rhino_shapes_c’, the
‘read_sdl’ function will attempt to resolve this by defining (or rewriting) a compound sort named
‘rhino_shapes_c’ to contain any disjunctive sorts defined in the SDL file. If a compound sort named
‘rhino_shapes_c’ already existed in the SortalGl grammar interpreter, its existing disjunctive sorts will
remain unless overwritten.

4. Importing future for Python 3.5 to Python 2.7 compatibility

When writing scripts using the SortalGl APl and library in Rhino or Python 2.7, it is necessary to put the
following lines of code at the start of every script to import the ‘future’ package. This enables compatibility
between Python 3.5 (which is used to write the SortalGl APl and library) and RhinoPython, which uses
IronPython (equivalent to Python 2.7). An example from the APl itself is shown on the right-hand side below:

from  future  import print function
from  future  import division from _ future  imoert print_function
from future import unicode literals fram _future__ impart divicior

T 77 - fxon  future  dmpext unioode literais
from  future  import absolute import fron  future  impext cbsolute impore


http://www.sortal.org/structures/SDL/index.html
http://www.sortal.org/structures/SDL/index.html

API

All functions described in this section (and imported under the comment 'API function imports' in the sortalgi

‘

__init__.py’ file) comprise the SortalGl API. Their uses, inputs and outputs are discussed in this section.

Import notation

= The use of ‘sgi’ in this section refers to the package ‘sortalgi’, which contains all the methods listed
above and is imported in code snippet examples as follows:
import sortalgi as sgi

= The references to ‘sc.sticky’ in this section, on the other hand, refer to scriptcontext.sticky, which
is a dictionary used to store values like the number of predicates/directives of a certain type
currently active in a run of the sortal library, or the spacing allowance (in the prevailing workspace
units) for drawing shapes in the Rhino viewport. It is imported as follows:

import scriptcontext as sc
= The terms ‘shape’ and ‘form’ are used interchangeably in this section.

= The Rhinocommon library is imported in the following variations:
import Rhino as r

import Rhino.Geometry as rg



Summary of all methods

NAME

apply_flow

check_precision

convert_shape

convert_sort

create_flow

create_rule

create_shape

default_precision

draw_rule

draw_shape

extract_shape

find_rule_appns

get_rule_lhs

PURPOSE

Applies a flow present in the flow register onto a shape present in the form register;
returns the result of the flow application as a list of Rhino GUIDs, which are by default
hidden from the Rhino viewport; an optional Boolean value called hide may be set to
False to render the resulting list of Rhino GUIDs visible in the viewport

Returns current precision (as number of decimal places) of sortal library

Converts a sortal shape to the target sort type (this target sort type may be a product
of ‘convert_sort’ or retrieved directly from the sort register)

Determines the structure of a shape's top sort type and creates the target equivalent
sort type based on user input; all external description types and attributes attached to
geometries are reflected in the newly constructed sort

(i.e. 2D -> 3D, P2D -> 2D)

Creates a flow based on a text string elaborating the order and use of existing rules in
the sortal rule register

Creates a rule object from the inputs rule name, rule description, LHS shape name and
RHS shape name

Creates a shape object from the following inputs: shape name, Rhino geometry, target
sort type; the target sort type may be left blank if there is only one functioning
geometric disjunctive sort active

Resets precision (as number of decimal places) of sortal library to 5

Draws the sides of a rule as Rhino geometry, side by side one another; the drawing
may be moved to a different location by inputting a reference point (this may be a
tuple/list of three numbers or a Rhino geometry point or GUID), where the reference
point serves as the new 'origin' for the drawing

Draws the shape retrieved from the form register as Rhino geometry; the drawing may
be moved to a different location by inputting a reference point (this may be a tuple/list
of three numbers or a Rhino geometry point or GUID), where the reference point
serves as the new 'origin' for the drawing

Extracts a sub-shape from a sortal shape based on the target sort type provided by the
user

Generates the rule applications from a given rule-shape combination; takes as input a

rule object or rule name, a sub-shape name (optional) and a main shape name and an
optional Boolean value as to whether to hide the resulting Rhino GUIDs corresponding
to the results; returns list of lists of GUIDs corresponding to resulting shapes after rule
applications, with the GUIDs hidden from the Rhino viewport by default

Returns LHS of rule instance as a list of Rhino GUIDs

10



NAME

get_rule_rhs

get_rule_descriptio
n

maximalize

move

overwrite_sdl

part_of

read_sdl

redraw

save_sdl

set_flow_descriptio
n

set_flow_name

set_precision

set_rule_descriptio

n

set_rule_name

set_shape_name

PURPOSE

Returns RHS of rule instance as a list of Rhino GUIDs

Returns description of rule instance as a text string
Maximalizes a sortal shape (called by its name from the form register)/list of Rhino
geometries (if the latter, redraws the Rhino geometries and returns them)

Moves lists of GUIDs in a list apart from another based on the dimensions of each list's
collective bounding box, and the axis of movement provided by the user; the default is
to move the shapes to the right (based on the x-axis) and upwards

Overwrites a pre-existing SDL file or overwrites certain rules, shapes or flows in a pre-
existing SDL file; this function may also be used to add rules, shapes or flows to a pre-
existing SDL file

Checks if a sub-shape agnostic object/list of Rhino geometries is part of a potentially
larger shape agnostic object/set of Rhino geometries

Sets up rules and shapes from SDL file in sortal library; adds shapes to form register;
converts SDL file rules and shapes to prevailing 'rhino_shapes_c' sort type; rewrites
contents of read SDL file to reflect prevailing 'rhino_shapes_c' structure, if necessary

Deletes inputted Rhino geometry and replaces them with their geometric counterparts
and corresponding labels, descriptions, predicates and directives based on data stored
inside the user text of the original geometry

Creates a new SDL file or overwrites a pre-existing one using the inputted file name
and the listed rules, shapes and flows

Changes the description of the given flow object

Changes the flow name of the given flow instance; if the new flow name matches that
of a pre-existing flow, prompts user for overwrite or renaming

Sets precision (as number of decimal places) of sortal library to user input

Changes the description of the given rule object

Changes rule name of rule instance; if new rule name matches that of a pre-existing

rule, prompts user for overwrite or change of rule name input

Changes name of shape object and updates its name in the form register

11



apply_all together

Finds the rule applications of a rule on a shape (an optional subshape input may be used to limit the number of
matches found within the shape). It applies all rule applications onto the shape in parallel and returns the sum
of the results of the rule applications as a list of Rhino GUIDs. By default, these drawings are hidden from the
Rhino viewport.

Syntax

sgi.apply all together (chosenRule, shape, subshape = None, refPt =
r.Geometry.Point3d(0,0,0), layerName = 'Default', hide = True prnt = False,

shapelIds = None)

Parameters

Required

= chosenRule: Rule name as text string
= shape: Name of main shape as text string as recorded in sortal library's form register pertaining to
shape
Optional
= subshape: Name of subshape as text string as recorded in sortal library's form register pertaining
to subshape

= refPt: GUID of point, tuple, or Rhino Geometry point of reference point which will serve as the
'origin' with which shapes will be plotted in respect to (in principle, a vector)

= layerName: Name of target layer as text string within Rhino workspace where the GUIDs will be
drawn onto

= hide: Boolean value True/False; True (default) — hides Rhino GUIDs from viewport; False — keeps
Rhino GUIDs visible in viewport

= prnt: Boolean value True/False; True - prints out description individuals as input-ready text string
(to create_shape) as well as printE form of shape after rule application; False (default) - nothing is
printed

= shapelds: List of Rhino GUIDs to clear after new shapes have been drawn
Returns

= appnGeometry: List of lists of Rhino GUIDs (each list correspond to a shape after a certain rule
application), if successful; these geometries are hidden from the viewport, by default

= None, if unsuccessful

Warnings & Errors

= TypeError: If initial shape or subshape is not a list of GUIDs or a text string or is empty, or if the
input for chosenRule is not a text string

= KeyError:
o If initial shape or subshape input's name is not present in the form register
o If rule name is not present in the rule register

o If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If subshape is not part of shape -> exits function and returns False

12



Example

chosenRule = ‘rule 1’

shape = ‘shape 1’

subshape = ‘shapelineSegments’

ruleAppns = sgi.find rule appns (chosenRule, shape, subshape)

The function returns a list of lists of Rhino GUIDs, each element list corresponding to a rule application. By
default, the shapes are drawn on top of one another and hidden from the Rhino viewport. The function ‘move’
may be used to space the results out from one another, and rs.ShowObjects may be used on the elements
inside ‘ruleAppns’ to show the shapes.

Pseudocode Snippet

This section illustrates a general overview of the rule application process seen in ‘apply_all_together’ in the
form of a truncated pseudocode describing the contents of the function. Note that some of the notation here
may not necessarily reflect available functions in the API. This pseudocode is written such that sections of the
pseudocode may be used by the user to create their own rule application ‘convenience functions’ for
interacting with the sortal library. This code snippet assumes that all inputs given are correct.
def apply all together (ruleName, shapeName, subshapeName = None, refPt =
r.Geometry.Point3d(0,0,0), layerName = ‘Default’):

# Retrieval of sortal objects

# This section is similar across rule application functions
ruleObject = rule.register[ruleName]

shapeSortal = form.formRegister [shapeName]

totalShape = None

# Determination of which shape to base rule application detection on
if subshapeName != None:

subshapeSortal = form.formRegister [subshapeName]

ruleAppns = ruleObject.detect (subshapeSortal)
else:

ruleAppns = ruleObject.detect (shapeSortal)

# This section will vary based on the intended behavior by the user
# Proceeds with summing up results of rule application if > 0
# Returns the sum
if ruleAppns > O:
results = []
for appn in ruleAppns:
results.append (appn.perform(shapeSortal.duplicate()))
totalShape = results[0]
for result in results([1l:]:
totalShape.sum(result)
return totalShape
else:

return None

13



apply_flow

Applies a flow operation (a sequence of rules with given instructions for looping, order of application and other
conditions) onto a shape. The flow string and the shape it is to be applied are retrieved from their respective
registers, and the Rhino GUIDs of the result of the flow are returned (and hidden from the Rhino Viewport). If
the user wishes to have the Rhino GUIDs be visible, set the last value ('hide') to False.

Syntax

sgi.apply flow(flowName, shapeName, refPoint = r.Geometry.Point3d(0,0,0), hide
= True)

Parameters

= flowName: Name of flow inside flow register to be applied onto shape
= shapeName: Name of shape inside form register that the flow will be applied onto

= refPoint: Reference point to serve as 'origin' point for the final shape after the flow; the shape will
be moved to this point; the default origin point is (0,0,0)

= hide: Boolean True/False value if output Rhino GUIDs are to be hidden; True (default) - hides
Rhino objects from viewport, False - leaves Rhino objects in viewport

Returns

= finalShapeRhino: Rhino GUIDs (hidden from Viewport)

= None is returned if the flow sequence is unsuccesful

Warnings & Errors

= KeyError: Shape name or flow name does not exist in their respective registers

= TypeError: Reference point input is a not tuple/list of three numbers, a Rhino point geometry or a
GUID OR the inputs for shape name and/or flow name are not text strings

= Error: If the number of elements in the reference point tuple/list is not exactly three numbers, or
if 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If the flow sequence could not be carried out successfully

Example
flowName = ‘flow 1’
shapeName = ‘shape 1’

refPoint = refPoint = r.Geometry.Point3d(0,0,0)
new shape = sgi.apply flow(flowName, shapeName, refPoint, hide = False)

The contents of ‘new_shape’ will be a list of Rhino GUIDs corresponding to the drawing of the shape in the
Rhino viewport. Because ‘hide’ is set to False, the resulting drawing will be visible in the workspace.

check_precision

Returns the precision of comparison (number of decimal places) inside the sortal library (an integer value)

14



Syntax

sgi.convert to agnostic(shapeRhino = [], classification = None, descriptions =
'', refPoint = Rhino.Geometry.Point3d(0,0,0))

Parameters
= None
Returns
= Integer value corresponding to number of decimal places the sortal library applies onto numbers

Warnings & Errors

= None

Example
sgi.check precision()

This returns an integer.

convert_shape

Converts the contents of sortalShape (a sortal shape data structure) to their counterpart geometric sorts in
targetSort. All external, standalone descriptions as well as attributes attached to the geometries are carried
over, so long as they are reflected in targetSort

Syntax

sgi.convert shape (sortalShape = None, targetSort = None, newName = None)
Parameters

= sortalShape: Text string. The name of the shape or the sortal shape data structure to be converted
to the target sort in targetSort; this may have a primitive, attribute or disjunctive sort type; if the
input has a compound sort type and there is only one functioning geometric disjunctive sort inside
the compound sort, then the shape corresponding to this functioning geometric disjunctive sort is
extracted and converted to the target sort

= targetSort: Text string. The name of the target sort type or the sort type data structure that is the
end goal of the conversion; this may be a primitive, attribute or disjunctive sort; if the target sort
type is a compound sort, an error will be raised.

To illustrate possible conversion cases:

a. sortalShape: 'shape_1' with sort type meta3D, targetSort: metaP2D; this will convert the geometric
individuals of 'shape_1'to P2D geometric individuals and retain any attribute types carried over to
metaP2D. However, if, for example, meta3D has line segments with labels, while metaP2D has

primitive line segments only, then the labels attached to line segments in 'shape_1' will not be
maintained.

b. sortalShape: 'linel' with sort type lineSegP3D, targetSort: lineSeg2D; this will construct the shape

'linel' as non-parametric, 2D line segments. The same behavior regarding attribute maintenance
applies here as in (a).

15



c. Sort type: ellipticalArc3D, targetSort: 'P3D'; this is not possible, as elliptical arcs are not enabled for
parametric behavior in the sortal library.

d. Sort type: meta3D (disjunctive, including pointN3D), targetSort: pointP2D; in this case, only the
pointP3D form will be retrieved from meta3D and turned to its non-parametric 2D counterpart and
outputted.

e. Sort type: rhino_shapes_c, with only one functioning geometric disjunctive sort (N3D) because the
other sort type present is a dummy disjunctive sort composed of two description sorts.

= newName: The name of the converted shape that will be registered in the shape and the form

register (text string); if none is given, then the name of the original shape and the target sort are
concatenated to create a name for the shape

Returns

= newsSortalShape: Returns converted sortal shape with geometric individuals reflecting attribute
structure, and non-parametric/parametric behavior of targetSort, if successful

= False: if unsuccessful

Warnings & Errors

= TypekError:

O If the input for ‘sortalShape’, ‘targetSort’ or ‘newName’ is not a text string,
o If the input for ‘targetSort’ is a compound sort

= KeyError:
O If the sortal shape or target sort does not exist in the form/sort register

© If 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If the sort type of sortalShape is already the same as the target sort

Example

The sort type to be used in conversion is first retrieved from the sort register.
new_sort = sort.register[‘P3D’]

This retrieves a shape with a non-parametric 3D disjunctive sort (housed under the compound sort
‘rhino_shapes_c’) and converts it to the disjunctive sort ‘P3D". The new shape is given the name ‘shape_2’ in
the form register.

new sort = sgi.convert sort(‘shape 1’, new sort, ‘shape 27)

convert_sort

Determines and constructs the counterpart sort type contained in sortalStructure, according to the target sort's
specified parametric-dimension combination (e.g., non-parametric 2D - N2D, non-parametric 3D - N3D,
parametric 2D - P2D, parametric 3D - P3D)

Syntax

sgi.convert to agnostic(shapeRhino = [], classification = None, descriptions =
''", refPoint = Rhino.Geometry.Point3d(0,0,0))

16



Parameters

= sortalStructure: Name (text string) or actual data structure of sort type to be converted over to

new parametric-dimension structure; this can be a disjunctive, attribute or primitive sort
= targetSort: Text string of target sort type; this may be 2D or 3D, non-parametric or parametric
= For example:

= a.sortalStructure: meta3D, targetSort: 'P2D'; this will determine and construct the sort type that

mirrors the geometry and their attributes in meta3D, but as parametric 2D geometric sorts

= b. sortalStructure: lineSegP3D, targetSort: 'N2D'; this will construct the 2D line segment geometric
sort and bring over any attributes present in lineSegP3D

= c. sortalStructure: ellipticalArc3D, targetSort: 'P3D'; this is not possible, as elliptical arcs are not
enabled for parametric behavior in the sortal library

Returns

= targetSortType: New sort type corresponding to targetSort variation, that mirrors base geometry
in sortalStructure, but converts them to their counterparts as in targetSort, if successful. If the
sortal structure being converted is a disjunctive sort, it is automatically included in
'rhino_shapes_c'; otherwise, it is only stored in the sort register

= None, if unsuccessful

Warnings & Errors

= TypeError: Input for sortalStructure is neither a text string nor a sort type data structure, or input
for targetSort is not a text string

= KeyError:
© If input for sortalStructure is a text string that is not present in the sort register

o if 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has not yet

been set up
Example
original sort = sort.register[‘P3D’]
new sort = sgi.convert sort(original sort, ‘'N2D’)

This returns a new sortal structure based on the sort types in ‘original_sort’, but enabled with non-parametric
2D sort types

create_flow

Creates a flow from the inputs flowName (name of the flow object), flowDesc (description of the flow object),
and flowSeq (text string sequence of rule names and ordering, looping and execution instructions)

Syntax

sgi.create flow(flowName, flowDesc = '', flowSeq = '')

Parameters

= flowName: Flow name (text string); this will be used to retrieve the flow object from the flow
register

17



= flowDesc: Flow description (text string, optional); this is used to describe the flow object

= flowSeq: Flow sequence (text string); this text string contains the sequence of rules as well as their
ordering, looping and execution instructions

Returns

= newFlow: The flow sortal data structure is returned if the flow is successfully created

Warnings & Errors

= TypekError: If the input for flowName, flowDesc, or flowSeq is not a text string

= ValueError: If the input for flowName or flowSeq is empty, or a rule name specified in flowSeq is
not present in the rule register

= KeyError:
© If a flow object with the same data as flowName already exists in the flow register

o if 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has not yet

been set up
Example
flowName = ‘fl1'
flowDesc = ‘test flow’
flowSequence = ‘rull (rul2 rul3{2})*’

sgi.create flow(flowName, flowDesc, flowSequence)

create_rule

Creates a new rule instance; it takes as input the rule name, rule description, LHS and RHS agnostic shapes/
shape names/Rhino geometries, predicates (for LHS) and directives (RHS). Since ‘create_rule’ is linked to the
sortal library, the act of creating a rule object checks if a rule with the same name as the new rule being created
already exists. If yes, then the rule is not created and the function is exited.

Syntax
sgi.create rule(ruleName, ruleDesc, lhs, rhs, predLHS = None, dirRHS = None,
prnt = False)

Parameters

= ruleName: Name of rule to be created (text string)

= ruleDesc: Description of rule to be created (text string)
= |hs: Name of shape to become LHS of rule (text string)
= rhs: Name of shape to become RHS of rule (text string)

= predLHS: Agnostic dictionary of predicates (optional); usually, this is obtained from
sgi.create_shape

= dirLHS: Agnostic dictionary of directives (optional); usually, this is obtained from sgi.create_shape

= prnt: Boolean value, corresponding to whether to print if rule was created successfuly, and as to
which predicates/directives were added to the rule successfully

18



Returns

= Sortal rule data structure, if successful

= None, if unsuccessful

Warnings & Errors

= MessageBox: If a rule with the same name already exists in the sortal register, then the user is
prompted for whether they would like to overwrite the pre-existing rule or to give the rule to be
created a different name or to exit the create_rule function; alternatively, if the geometry within
the rule object's LHS is insufficient

= TypeError: If the input for rule name or rule description or LHS shape name or RHS shape name is
not a text string

= KeyError:
o If the shapes corresponding to the inputs for the LHS and RHS shape names are not present in

the form register

© If 'rhino_shapes_c'is not present in the sort register, i.e. sort types in sortal library has not yet

been set up
Example
ruleName = ‘rule 1’
ruleDesc = ‘test rule’

lhsName = ‘shape 1lhs’

rhsName = ‘shape rhs’
newRule = sgi.create rule(ruleName, ruleDesc, lhsName, rhsName, predicates,
directives)

The shapes corresponding to the names ‘shape_lhs’ and ‘shape_rhs’ are retrieved from the form register and
are used to create the rule. The function also stores the newly created rule instance in the sortal library. A rule
object can be retrieved later by using the property of the sortal library import ‘rule’, called ‘register’:

ruleObject = rule.register[ruleName]

This returns the sortal rule object.

create_shape

Creates a sortal shape from a collection of Rhino GUIDs. It names the shape according to the input for the
shapeName variable in the sortal library. It returns the predicate/directive dictionaries.

Syntax

sgi.create shape (shapeName = None, shapeData = None, descriptions = '',
classification = None, refPoint = rg.Point3d(0,0,0), prnt = False)
Parameters

= shapeName: Name of shape (text string)
= shapeData: List of Rhino GUIDs that will compose the sortal shape

= descriptions: Text string of descriptions to include in the sortal shape, e.g.

'labell@("A2", 1, 1234);("A3", 4, 1234) |label2@("A1", 1, 1234) |label2@("A9", 8, 1234)'

19



where there are two description types, 'labell’ (followed by an ampersand “@”; 2 individuals
separated by a semicolon “;”), and 'label2' (2 individuals); declaration of different description types
and their individuals is separated by a vertical dash “|”

= classification: Name of target disjunctive sort type (text string); this sort type must already be
present in the sort register under the compound sort 'rhino_shapes_c'; this input may be left

blank if there is only one active geometric disjunctive sort inside ‘rhino_shapes_c’ and the other
sort is a dummy sort composed of two description sort types

= refPoint: Reference point to serve as 'origin' point for shape; the default origin point is (0,0,0)

= prnt: Boolean value (True/False); True - prints the resulting sortal shape according to the output of
the 'printE' command in the sortal library; False (default) - does not print anything

Returns

= predicates: Predicates dictionary

= directives: Directives dictionary

Warnings & Errors

= TypekError: If shapeName input is not a text string, or if shapeData input is not a list of Rhino
GUIDs, or if shapeData has any elements that are not Rhino GUIDs inside

= KeyError:
o If the result Rhino GUIDs to Agnostic Dictionary conversion is empty

o if'rhino_shapes_c'is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If descriptions input is not a text string

Example

shapelHS = rs.GetObjects ('Select LHS shape')

LHSdesc = 'segmentCount@t|platform@ (name?="bp", count?>0, leng, wid, layer,
ad type, ad count)'

ptl = rs.GetObject ('Select a reference point')
predicates, directives = sgi.create shape ('shapelL',6 shapeLHS, LHSdesc, 'P2D',
ptl)

default_precision

Sets precision of comparison (number of decimal places) inside sortal library back to default (5).

Syntax

sgi.default precision()

Parameters

= None
Returns

= Integer value corresponding to number of decimal places the sortal library applies onto numbers
(in this case, 5)

20



Warnings & Errors

= None

Example

sgi.default precision()

draw_rule

'draw_rule' draws the sides of a rule in the Rhino workspace. This function supposes that the rule is already
present in the rule register.The rule sides are drawn apart from each other, with the space between them
dictated by the value of 'fixed_factor' or the size of the bounding box of the LHS GUIDs. When a reference point

is given (tuple/list/vector/point), the rule shapes are moved to the reference point. The default reference point
is the origin (0,0,0).

Syntax
sgi.draw_rule (ruleName, refPt = r.Geometry.Point3d(0,0,0)
Parameters

= ruleName: Name of rule object to draw from inside the rule register (text string)
= refPt: Reference point (optional - tuple / list of integers or floats / vectors / points (3Ds)); relocates

= drawings of rule sides with reference point serving as the origin; default origin is (0,0,0)
Returns

= List of lists in the form [IhsRhino, rhsRhino] or [IhsMoved, rhsMoved]: List of lists of Rhino
Geometry [[lhs shape GUIDs], [rhs shape GUIDs]]; an empty list is returned if the rule cannot be
found in the rule register

Warnings & Errors

= KeyError:
© If rule name does not exist in the rule register

o If 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: Rule name input is not a text string

Example
ruleName = ‘rule 1
pt = rs.GetObject (‘Select reference point for rule drawing’)

sgi.draw rule(ruleName, pt) #

21



draw_shape

Draws the shape in the Rhino workspace. This function assumes that the shape is already present in the form

register. When a reference point is given (tuple/list/vector/point), the shape GUIDs are moved to the reference
point. The default reference point is the origin. The name of the shape must already be present in the form
register for this function to work.

Syntax

sgi.draw_shape (shapeName, refPt = r.Geometry.Point3d(0,0,0))
Parameters

= shapeName: Name of shape object to draw from inside form register (text string)

= refPt: Reference point (optional - tuple / list of integers or floats / vectors / points (3Ds)); relocates
drawing of shape with reference point serving as the origin; default origin is (0,0,0)

Returns

= shapeNewRhino: List of Rhino Geometry [shape GUIDs]; this is returned as an empty list the shape
does not exist in the shape register

Warnings & Errors

= Warning: Shape with the inputted shape name does not exist in the form register
= TypeError: Shape name input is not a text string

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has
not yet been set up

Example
shape name = ‘shape 1’
shape guids = sgi.draw_shape (shape name)

extract_shape

Searches for a shape inside the input sortal shape with the same sort type and sort level as the target sort type
input. For example, if a shape containing only line segments needs to be retrieved and the corresponding sort
type to these line segments is called ‘lineSegment-A’, then the target sort type input is ‘lineSegment-A’ and a

shape with the sort type ‘lineSegment-A’ is returned if it exists inside the input sortal shape.
Syntax

sgi.extract shape (sortalShape, targetSortType, shapeName = None)
Parameters

= sortalShape: Name of shape (text string) or sortal shape data structure
= targetSortType: Name of sort type (text string) or sort type data structure

= shapeName: Name of extracted shape; this is used to register the extracted shape in the form
register, if it is successfully extracted

22



Returns

= result: Sortal shape (actual sortal shape data) corresponding to targetSortType and registered in
the form register, if successful

= None, if no such shape with the same sort as the target sort type can be found inside the input

Warnings & Errors

= TypekError: If the input for sortalShape / targetSortType (/shapeName) is neither a text string or a
sortal shape data structure/sort type data structure

= KeyError:

o If sortalShape or targetSortType is a text string input, this error is raised if they do not exist in
the form/sort register

© If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If sortalShape does not contain any sort type equal to targetSortType

Example
newShape = sgi.extract shape(‘shape 1’, ‘lineSegment’, ‘lineSegments’)

This returns the sortal form with the disjunctive sort ‘lineSegment’ and stores it in the form register under the
name ‘lineSegments’.

find_rule_appns

Finds the rule applications of a rule on a shape (an optional subshape input may be used to limit the number of
matches found within the shape). It returns a list of lists of GUIDs, with each list corresponding to the result of
the rule application on the shape as drawn in the Rhino workspace. By default, these drawings are hidden from
the Rhino viewport.

Syntax

sgi.find rule appns (chosenRule, shape, subshape = None, refPt =
r.Geometry.Point3d(0,0,0), layerName = 'Default', hide = True, prnt = False,
shapeIds = None)

Parameters

Required
= chosenRule: Rule name as text string

= shape: Name of main shape as text string as recorded in sortal library's form register pertaining to
shape

Optional
= subshape: Name of subshape as text string as recorded in sortal library's form register pertaining
to subshape

= refPt: GUID of point, tuple, or Rhino Geometry point of reference point which will serve as the
'origin' with which shapes will be plotted in respect to (in principle, a vector)

= JayerName: Name of target layer as text string within Rhino workspace where the GUIDs will be
drawn onto

23



= hide: Boolean value True/False; True (default) — hides Rhino GUIDs from viewport; False — keeps

Rhino GUIDs visible in viewport

= prnt: Boolean value True/False; True - prints out description individuals as input-ready text string
(to create_shape) as well as printE form of shape after rule application; False (default) - nothing is
printed

= shapelds: List of Rhino GUIDs to clear after new shapes have been drawn

Returns

= appnGeometry: List of lists of Rhino GUIDs (each list correspond to a shape after a certain rule
application), if successful; these geometries are hidden from the viewport, by default

=  None, if unsuccessful

Warnings & Errors

= TypeError: If initial shape or subshape is not a list of GUIDs or a text string or is empty, or if the
input for chosenRule is not a text string

= KeyError:
o If initial shape or subshape input's name is not present in the form register
O  If rule name is not present in the rule register

© If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If subshape is not part of shape -> exits function and returns False

Example

chosenRule = ‘rule 1’
shape = ‘shape 1’
subshape = ‘lineSegments’

ruleAppns = sgi.find rule appns (chosenRule, shape, subshape)

The function returns a list of lists of Rhino GUIDs, each element list corresponding to a rule application. By
default, the shapes are drawn on top of one another and hidden from the Rhino viewport. The function ‘move’
may be used to space the results out from one another, and rs.ShowObjects may be used on the elements

inside ‘ruleAppns’ to show the shapes.

get_rule_lhs

Returns the sortal data structure corresponding to the LHS in the given rule input, or if rhino is set to True,
creates a drawing of the rule LHS in the Rhino viewport and returns the corresponding list of Rhino GUIDs.

Syntax

sgi.get rule lhs(name, rhino = True)
Parameters

= name: Name of target rule object

24



= rhino: Boolean value, indicates if side of rule should be drawn and returned as list of Rhino GUIDs;
True (default) - returns Rhino GUIDs (hidden from viewport), False - returns sortal form
corresponding to target rule side

Returns

= Rule object description (text string); LHS or RHS (as sortal shape or as hidden Rhino GUIDs
generated in original location of rule), if successful

= None, if not successful

Warnings & Errors

= TypeError: If rule name input is not a string
= KeyError:
© If rule name input is not present in the rule register

o If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

Example

1hsGUIDs = sgi.get rule lhs(‘rule 17)

This function call returns a list of GUIDs corresponding to the drawing of the LHS in the Rhino viewport.
OR

lhsShape = sgi.get rule lhs(‘rule 1’, False)

This returns the sortal data structure corresponding to the LHS in ‘rule_1".

get_rule_rhs

Returns the sortal data structure corresponding to the RHS in the given rule input, or if rhino is set to True,
creates a drawing of the rule RHS in the Rhino viewport and returns the corresponding list of Rhino GUIDs.

Syntax
sgi.get rule rhs(name, rhino = True)
Parameters

= name: Name of target rule object

= rhino: Boolean value, indicates if side of rule should be drawn and returned as list of Rhino GUIDs;
True (default) - returns Rhino GUIDs (hidden from viewport), False - returns sortal form
corresponding to target rule side

Returns

= Rule object description (text string); LHS or RHS (as sortal shape or as hidden Rhino GUIDs
generated in original location of rule), if successful

= None, if not successful

Warnings & Errors

= TypeError: If rule name input is not a string

25



= KeyError:
© If rule name input is not present in the rule register

© If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

Example
rhsGUIDs = sgi.get rule rhs(‘rule 17)
This returns a list of GUIDs corresponding to the drawing of the RHS in the Rhino viewport.

OR
rhsShape = sgi.get rule rhs(‘rule 1’, False)

This returns the sortal data structure corresponding to the RHS in ‘rule_1".

get_rule_description

Returns the description text of the given rule object, if the rule exists.

Syntax
sgi.get rule description (name)
Parameters
= name: Text string; name of target rule object
Returns

= Text string of rule object description, if successful

= None, if not successful

Warnings & Errors

= TypeError: If rule name input is not a string
= KeyError:
© If rule name input is not present in the rule register

o If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet

been set up
Example
descriptionText = sgi.get rule description(‘rule 1')
maximalize

Accepts the name of a shape object or a list of Rhino GUIDs and returns the maximalized sortal shape or its
corresponding list of Rhino GUIDs.

26



Syntax

sgil.maximalize (shape, target = None, rhino = False, hide = False, delete =
False)

Parameters

= shape: Shape data in the form of a list of Rhino GUIDs (target disjunctive sort for maximalized
must be provided) or the shape name as a text string

= target: Target disjunctive sort for the shape to be maximalized (text string), this is necessary if the
input is a list of Rhino GUIDs

= rhino: Boolean value (True/False); True - returns list of Rhino GUIDs corresponding to maximalized
shape; False (default) - returns agnostic form, please note that if Rhino GUIDs are given as input,
then Rhino GUIDs will be returned

= hide: Boolean value (True/False); True - hides Rhino geometry output from viewport; False
(default) - leaves Rhino geometry output visible in viewport

= delete: Boolean value (True/False); if the inputs are a list of Rhino GUIDs, then True deletes the
inputs, and False (default) leaves the inputs still in the Rhino viewport

Returns

= maxShape: If a shape name is inputted, then it returns the maximalized sortal data structure of
the shape unless the variable rhino is set to True

If a list of Rhino GUIDs is inputted, then it returns a list of Rhino GUIDs corresponding to the

maximalized form by default

Warnings & Errors

= TypekError: If type of input is invalid (i.e. not a list of Rhino GUIDs or a shape name text string)
= ValueError: If input is an empty list or if shape name doest not exist in the form register

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has
not yet been set up

Example
shapeName = ‘shape 1’
maximalShape = sgi.maximalize (shapeName)

Forgoing the target sort type is allowed so long as there is only one active geometric disjunctive sort within
‘rhino_shapes_c’. This function call will return the maximalized sortal data structure corresponding to
‘shapeName’ in the form register.

OR
maximalShapeGUIDs = sgi.maximalize (shapeName, rhino = True, hide = True)

This function call will return a list of Rhino GUIDs, but will hide them from the Rhino viewport, as ‘hide'

move
Spaces out the shapes in a list based on either the translationVec variable (if a valid input is giving) or based on
the bounding box dimensions multiplied by the value of sc.sticky in vertical order. The Rhino GUIDs of the

moved shape(s) are returned.

27



Syntax

sgi.move (shapes, alignment = False, translationVec = False)
Parameters

= shapes: List of Rhino GUID lists or list of Rhino GUIDs, translation vector (optional)

= alignment: Vector that will be reduced to unit vector to determine axis of moved shapes (e.g.
vertical ascending or horizontal going to the right, etc.)

= translationVec: Single vector or list of vectors, that serve.s as the spacing reference vector/s
between shapes. The space between the first and second shapes will follow the first vector
element of the list, the space between the second and third shapes will follow the second vector
element of the list, and so on.

Returns

= movedShapes: List of Rhino GUID lists after moving the geometries

= None, if unsuccessful

Warnings & Errors

= TypekError: If data type of alignment and/or translation vector is not a tuple or list of three
numbers or a Vector3d object

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has
not yet been set up

= Warning: If the input for the reference point is invalid (not a tuple or a list of three numbers or a
Rhino point geometry)

Example

chosenRule = ‘rule 1’

shape = ‘shape 1’

subshape = ‘lineSegments’
ruleAppns = sgi.find rule appns (chosenRule, shape, subshape)
sgi.move (ruleAppns, alignment = r.Geometry.Vector3d(l,0,0), translationVec =

r.Geometry.Vector3d(10,0,0))

overwrite_sdl

Stores rules, flows and an initial shape in an SDL file based on the variable fileName, by accepting their name
references, and retrieving the relevant sortal objects. If an SDL file with the same name already exists, then the
user is prompted if they want to overwrite the file or give a new value to fileName. The input for the file name
of the intended SDL file may also include the address of the intended location.

Syntax
sgi.overwrite sdl (fileName, rules = [], shapes = [], flows = [], append =
False, prnt = True)

28



Parameters

= fileName: Text string of file name (for .sdl file; this may include the intended location's full

address)
= rules: List of sortal rule object names (optional, this may be an empty list)
= shape: One shape object name (optional, this may be ignored)

= flows: List of sortal flow object names (optional, this may be an empty list)

Note: If including the full address of the target SDL file, the following format must be observed:

'C:\\Users\AKIDRIBM\\AppData\\Roaming\\Grasshopper\\Libraries\\source_code_gh_dev\\'+ <sdl
file name> +'.sdl'

where every slash is doubled.

Returns

= If successful, an SDL file of name 'fileName' in the intended location with rule(s) and shape stored

in it is created, and True is returned. Otherwise -

= False: Unsuccessful operation

Warnings & Errors

= Warning: If a rule, form (shape) or flow does not exist in their corresponding register, or if the SDL
file with the target file name does not exist, or if the SDL file name does not have the '.sdl'
extension

= TypekError: If the input for rules, shapes, flows are not lists, or if there is an invalid input (not a text
string) within the lists

= KeyError:
o If arule, form or flow name within a list does not exist in the corresponding register

o If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet

been set up
Example
fileName = ‘rules 3D.sdl’
rules = [‘WHL-1a’]
shapes = [‘shape 1']
flows = [‘fl’, “f2']
sgi.overwrite sdl (fileName, rules, shapes, flows, append = True, prnt = True)
part_of

Checks if a subshape agnostic tuple is part of a possibly larger shape agnostic tuple
Syntax
sgi.part of (subshape, shape)
Parameters
= subshape: List of Rhino GUIDs or name of subshape

29



= shape: List of Rhino GUIDs or name of shape
Returns

= True: If the subshape is part of the shape

= False: If the subshape is not part of the shape

Warnings & Errors

= KeyError:
O If either shape or subshape name is not available in the form register

o If ‘rhino_shapes_c’ is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= TypekError: If either shape or subshape input is not a text string

Example

result = sgi.part of (subshapeAgnostic, shapeAgnostic)

read_sdl

Opens an SDL file and merges any compound sorts inside with the prevailing iteration of the compound sort
'rhino_shapes_c' in the sort register. It also updates any rules and shapes with outdated sort types not set to
the prevailing compound sort 'rhino_shapes_c' and rewrites the SDL file to ensure compatibility with the API.

Syntax
sgi.read sdl (fileName)

Parameters

= fileName: SDL file name; if including the full address of the target SDL file, the following format
must be observed:

'C:\\Users\AKIDRIBM\ \AppData\\Roaming\\Grasshopper\\Libraries\
\source code gh dev\\'+ <sdl file name> +'.sdl'

where every slash is doubled.
Returns

= True: if successful

= False: if unsuccessful

Warnings & Errors

= KeyError: If the file name does not exist

Example

sgi.read file(‘rules 3D.sdl’)
OR

sgi.read sdl ()'C:\\Users\AKIDRIBM\\AppData\\Roaming\\Grasshopper\\Libraries\
\source code gh dev\\rules 3D.sdl"')

30



redraw

'redraw' redraws an inputted list of Rhino GUIDs with their corresponding tags, predicates, directives,
labels and descriptions. The original Rhino GUIDs inputted into the function are deleted, along with
any text dots that serve only as tag data and predicate/directive information holders.

Syntax
sgi.redraw(rhinoObject, targetSort = 'N3D')
Parameters

= rhinoObject: List of Rhino GUIDs to redraw

= targetSort: Name of target disjunctive sort type to classify geometry under (necessary, default is
non-parametric 3D disjunctive sort 'N3D')

Returns

= objectlds: List of Rhino GUIDs corresponding to redrawn geometry; the function also deletes
theinputted list of Rhino GUIDs, generates new list of GUIDs as outputs

Warnings & Errors

= TypeError:
o If any elements inside rhinoObject are not Rhino GUIDs
o If the input for rhinoObject is not a list of Rhino GUIDs

= Error: If the sortal library has not yet been set up, i.e. if the compound sort 'rhino_shapes_c' does
not yet exist in the sort register

Example
shape list = rs.GetObjects(‘Select shape to be redrawn’)
shape list redrawn = sgi.redraw(shape list)

The target sort type input may be forgone when using ‘redraw’ if there is only one active geometric sort type in the
compound sort ‘rhino_shapes_c’. However, in the case of multiple active geometric sort types in ‘rhino_shapes_c’, it
is advised that a target sort type for the shape be inputted, as otherwise, the ‘redraw’ function will base the sort type
of the shape on the first disjunctive sort it encounters.

save_sdl

Stores rules, flows and an initial shape in an SDL file based on the file name input, by accepting their name
references, and retrieving the relevant sortal objects. If an SDL file with the same name already exists, then the
user is prompted if they want to overwrite the file or give a new value to the file name input. The input for
'fileName' can also include the address of the intended location.

Syntax

sgi.save sdl(fileName = 'new.sdl', rules = [], shape = '', flows = [])
Parameters

= fileName: Text string of file name (for .sdl file; this may include the intended location's full
address)

31



= rules: List of sortal rule object names (optional, this may be an empty list)
= shape: One shape object name (optional, this may be ignored)

= flows: List of sortal flow object names (optional, this may be an empty list)

Returns

= True: If successful; an SDL file of name 'fileName' in the intended location with rule(s) and shape
stored in it is created

= False: If unsuccessful

Warnings & Errors

= MessageBox: If an SDL file with the same file name already exists in the location; the user is
prompted if they would like to overwrite the file or give the current save_sdl function a new file

name input
= Warning: If the rule or shape or flow name does not exist in its corresponding register
= TypekError:

O If the input for rules or flows is not a list or the input for shape is not a string

o If there are any non-text inputs within the input for rules or flows
= KeyError:

©  If the shape name does not exist in the form register

o If 'rhino_shapes_c'is not present in the sort register, i.e. sort types in sortal library has not yet

been set up
Example
sgi.save sdl(fileName = 'new.sdl', [‘rul 1’, ‘rul 2’], [‘shape 1’, ‘shape 2'],
[Y£17, ‘£27])

set_flow_description

Changes the description of a flow object in the sortal flow register.

Syntax

sgi.set flow description (flowName, newDesc)
Parameters

= flowName: Name of flow object (text string)

= newDesc: New description for flow object (text string)
Returns

= True: If successful

= False: If successful

Warnings & Errors

= KeyError: If the original flow name does not exist in the sort register

32



= Error: If 'rhino_shapes_c'is not present in the sort register, i.e. sort types in sortal library has not
yet been set up

= Warning: If the input for the new description or the original flow name is not a text string

Example

sgi.set flow description(‘fl’, ‘new description text’)

set_flow_name

Changes the name of a flow object in the sortal flow register. However, if the new flow name matches that of a
pre-existing flow, this will cause an error. If successful, the previous flow name is deleted from the sortal
library's flow register and is free to use for new flows.

Syntax

sgi.set flow name (oldName, newName)
Parameters

= oldName: Name of target flow object to be altered (text string)

= newName: New name of target flow object (text string)
Returns

= True: If successful

= False: If unsuccessful

Warnings & Errors

= TypekError: If shapeRhino is not a list of Rhino GUIDs OR if ‘descriptions’ is not None or a text string
= Warning: If conversion was unsuccessful

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sortal library has not yet been
set up

Example

sgi.set flow name (‘fl’, ‘flow 27)

set_precision

Sets precision of comparison (number of decimal places) inside sortal library (integer value).

Syntax

sgi.set precision (new)
Parameters

= new: Integer value referring to number of decimal places to indicate precision

33



Returns

= True: if successful in setting new precision value

= False: if unsuccessful

Warnings & Errors

= None

Example
sgi.set precision(10)

The precision in the sortal library is now 10 decimal places.

set_rule_description

Changes the description of a rule object in the sortal rule register.

Syntax

set rule description(ruleName, newDesc)
Parameters

= ruleName: Name of rule object (text string)

= newDesc: New description for rule object (text string)
Returns

= True: If successful

= False: If unsuccessful

Warnings & Errors

= KeyError:
© If the original rule name does not exist in the sort register

© If 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has not yet
been set up

= Warning: If the input for the new description or the original rule name is not a text string

Example

newRuleDescription = 'new rule description'
sgi.set rule description(‘rul 1’, newRuleDescription)
set_rule_name

Changes the name of a rule object in the sortal rule register; however, if the new rule name matches that of a
pre-existing rule, this will cause an error. If successful, the previous rule name is deleted from the sortal library's
rule register and is free to use for new rules.

34



Syntax

sgi.set rule name (oldName, newName)
Parameters

= oldName: Name of target rule object to be altered (text string)

= newName: New name of target rule object (text string)
Returns

= True: If successful

= False: If unsuccessful

Warnings & Errors

= KeyError:
o If the original rule name does not exist in the sort register

o If the new rule name already exists in the sort register or if 'rhino_shapes_c' is not present in
the sort register, i.e. sort types in sortal library has not yet been set up

= Warning: If the input for the original rule name or the new rule name is not a text string

Example

sgi.set rule name(‘rull’, ‘rule 17)

set_shape_name

Changes the name of a shape in the sortal form register.

Syntax

sgi.set shape name (shapeName, newShapeName)
Parameters

= shapeName: Name of shape object to be changed (text string)

= newShapeName: New name of target shape object (text string)
Returns

= True: If successful

= False: If unsuccessful

Warnings & Errors

= KeyError: If 'rhino_shapes_c' is not present in the sort register, i.e. sort types in sortal library has
not yet been set up

= Warning: If the input for the original shape name or the new shape name is not a text string

Example

sgi.set shape name (‘shape 1’, ‘shape 1 subshape’)

35



Rhino Methods

The functions listed in this section are used to add or remove information relating to attributes (weight, color,
descriptions), predicates and directives to Rhino geometry. These are collected alongside geometric information
when Rhino GUIDs are converted to sortal shape data structures.

For all methods to do with adding labels, descriptions, predicates and directives to the geometry, any specific
predicate or directive tag or label or description text already existing in the UserText of the selected geometry is
not added again to the data of the geometry.

Import notation

The use of ‘rm’ in this section refers to the class ‘rhino_methods’, which contains all the methods listed in this
section and is imported in code snippet examples as follows:

from sortalgi import rhino methods as rm

The terms ‘key name’ and ‘tag name’ refer to the key name of the Rhino geometry, that is used to recognize it
in the sortal library when adding predicate and directive data.

36



Summary of all methods

NAME

add_bound_line

add_color

add_description

add_distance

add_enum

add_label

add_longest_line

add_max_line

add_no_label

add_normal

add_point_on_li

ne

add_shortest_lin
e

add_void

add_weight

analysis

PURPOSE

Adds bound line predicate tag to line segment/polyline; indicated as 'bound' within
predicates text ("#()")

Adds color to Rhino Object (one or several objects may be selected) using RGB values; this
color is not visible in Print Preview Mode

Adds description to Rhino Object's user text, visualized as text dot with extra 'd( )’
enclosing text in the visual text dot assigned to geometry

Adds distance directive tag to geometries; first selected geometry may be found in either
LHS or RHS, second selected geometry must be found in RHS; range of values for length is
inputted to function call; directive is indicated as 'distance’ within the directives text
("#()') in the visual text dot assigned to geometry

Adds enumerative value to Rhino Object's user text, not visualized

Adds label data to Rhino Object's user text, visualized as text dot with extra 'l( )' enclosing
text in the visual text dot assigned to geometry

Adds longest-line predicate tag to line segment/s; indicated as 'longest' within predicates
text ('#()') in the visual text dot assigned to geometry

Adds max-line predicate tag to line segment/s, indicated as ‘max’ within predicates text
("#()') in the visual text dot assigned to geometry

Adds no-label predicate tag to geometry to constrain matching to geometries without
label attributes. This is indicated as 'no_label' within predicates text ('#()') in the visual
text dot assigned to geometry

Adds normal directive tag to line segments (if 2D) or plane segments (if 3D). This is
indicated as ‘normal » <group_name>’ within the directives text ('#()') in the visual text
dot assigned to geometry

Adds point-on-line directive tag to line segment/polyline, with the upper and lower
bounds for the range of segment values for point placement inputted to function call; this
is visually indicated as 'point_on_line » <group_name>' within the directives text ('#()")

Adds shortest line predicate tag to line segment/polyline; indicated as 'short' within
predicates text ('#()') in the visual text dot assigned to geometry

Adds void predicate tag to collection of points/text dots/line segments/a single plane
segment that form a closed polygon; indicated as 'void' within predicates text ('#()'), and
indicates which void group it belongs to in the visual text dot assigned to the collection of
geometry

Adds width (weight) to line or grayscale (weight255) to point or text dot in the visual text
dot assigned to geometry

Analyzes a list of Rhino GUIDs and moves points/extends lines to intersect directly with
each other (for lines to intersect with each other, for points to line on lines) in the visual
text dot assigned to geometry

37



NAME

clear_shape

delete_descripti
on

delete_label

delete_pred_dir

delete_tag

clear_everything

tag

PURPOSE

Clears a list of Rhino objects; takes as input a list/dictionary of Rhino GUIDs OR single
Rhino GUID

Removes description from Rhino Object's user text and in the visual text dot assigned to
geometry; deletes text dot 'attached' to line segment or plane segment, or reverts text
dot to a point, if the UserText of the Rhino Object becomes empty after removing the
description

Removes label from Rhino Object's user text and in the visual text dot assigned to
geometry; deletes text dot 'attached' to line segment or plane segment, or reverts text
dot to a point, if the UserText of the Rhino Object becomes empty after removing the
label

Removes predicate/directive data from Rhino Object and from the visual text dot
assigned to the geometry

Removes geometry tag from Rhino Object and from the visual text dot assigned to the
geometry

Deletes all Rhino objects in Rhino workspace, and clears all registers in the back-end

Adds or changes the tag data stored in a Rhino geometry and changes the visual text dot
'attached' to the geometry accordingly

38



add_bound_line

Adds bound line predicate tag to line segment/polyline; indicated as 'bound' within the predicates text (‘#()') in

the visual text dot assigned to geometry

Syntax

rm.add bound line(ends = 2, tagSelf = True)
Parameters

= ends: Integer (0, 1 or 2); this indicates whether the line will be bounded on the left side only (0),
the right side only (1), or both sides (2)

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns

= True: If tagging of geometry/ies with bound line directive is successful; otherwise, a TypeError will
be raised

Warnings & Errors

= TypekError:
© If input for ends is not one of the integers 0, 1 or 2

o If any of the Rhino geometry in the list of selected objects is not a straight curve (line

segment)
Example
rm.add bound line(ends = 2)
add_color

Adds color to Rhino Object (one or several objects may be selected) using RGB values. This color is not visible in
Print Preview Mode.

Syntax

rm.add color(r, g, b)

Parameters

= r:Integer (value between 0 and 255, inclusive of the two end values) correlating to Red value of
(R, G, B) color scale

= g:Integer (value between 0 and 255, inclusive of the two end values) correlating to Green value of
(R, G, B) color scale

= b: Integer (value between 0 and 255, inclusive of the two end values) correlating to Blue value of
(R, G, B) color scale

39



Returns

= True: If successful

= False: If unsuccessful

Warnings & Errors

= ValueError: If value of r, g or b is not in between 0 and 255

= TypekError: If any of the input values is not an integer

Example
rm.add color (235, 0, 225)

The user is then prompted which objects to change the color of. If multiple objects are selected for one
function call, then all these objects will have the same color as one another.

add_description

Adds description data to Rhino Object's user text, visualized as text dot with extra 'd( )’ enclosing text in the
visual text dot assigned to geometry. The user is first prompted to select the objects to add descriptions to, and
then for the description text to add onto each object.

If any items in the description text are to be treated as string literals or as ‘labels’, then they should be enclosed
with double quotes (” “).

Syntax
rm.add description(count = True)

Parameters

= count: Boolean value, indicating whether a single object or several objects are to be selected for
placing label data onto; True (default) — several objects; False — single object

Returns

= True: If successful; a statement indicating how many objects were given labels is also printed in the
Rhino viewport
= False: If no objects were selected

Warnings & Errors

= Warning: If no objects were selected

Example

rm.add description()

This allows the user to select multiple objects (as ‘count’ is set to True by default). Each object will have the
function prompting the user for the desired description text.

40



add_distance

Adds distance directive tag to geometries; first selected geometry may be found in either LHS or RHS, second
selected geometry must be found in RHS; range of values for length is inputted to function call; directive is
indicated as 'distance' within the directives text ('#( )') in the visual text dot assigned to geometry. Note that if
for the value(s) for the range of the distance of the new RHS object, if these inputs exceed 20 characters, then
they are not included in the visual text dot text of the geometry.

Syntax
rm.add _distance (distl = None, dist2 = None, tagSelf = True)
Parameters

= distl: Float, integer or description text string; minimum value of distance of LHS geometry (first object
selected) from RHS geometry (second object selected)

= dist2: Float, integer or description text string; maximum value of distance of LHS geometry (first object
selected) from RHS geometry (second object selected)

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the

currently value inside sc.sticky[‘keyCount’]

Returns

= True: If tagging of geometry/ies with bound line directive is successful; otherwise, a TypeError will be
raised

= False: If no objects were selected

Warnings & Errors

= TypeError:
o If novalues are inputted for either ‘dist1’

© if either of the objects selected by the function are not straight curves (line segments) or
points or text dots

= ValueError: If input values for either ‘dist1’ or ‘dist2’ are not float numbers, integers or description text
strings
Example

rm.add distance (10, 20)
OR

rm.add distance (15)

add_embeds

Adds the embeds predicate to two Rhino Objects’ user text. The user is prompted to select two geometries; the
first one is the container geometry in which the second geometry must be embedded inside. Based on the
constraints of the sortal library, the first geometry must be either a plane segment or a line segment. If the

41



former, only points and line segments are allowed in the selection of the second geometry. If the latter, then
only points are allowed.

Syntax

rm.embeds ()
Parameters

= None
Returns

= True: If successful

= False: If no object was selected

Warnings & Errors

=  None

Example

rm.embeds ()

The text displayed in the visual text dots of the selected geometry show the key name / tag name of the Rhino
geometry they are paired with, with respect to the embeds predicate.

add_enum

Adds enumerative value to Rhino Object's user text. The user is first prompted for the object to add the
enumerative value to, and then is prompted for the single enumerative value. The latter is stored in the
UserText of the geometry. This is not visualized in the visual text dot attached to the geometry.

Syntax

rm.enum ()
Parameters

= None
Returns

= True: If successful

= False: If no object was selected

Warnings & Errors

=  None

Example

rm.enum ()

42



add_label

Adds label data to Rhino Object's user text, visualized as text dot with extra 'l( )' enclosing text in the visual text
dot assigned to geometry. The user is first prompted to select the objects to add labels to, and then for the
label text to add onto each object.

Syntax

rm.add label (count = True)

Parameters

= count: Boolean value, indicating whether a single object or several objects are to be selected for

placing label data onto; True (default) — several objects; False — single object

Returns

= True: If successful; a statement indicating how many objects were given labels is also printed in the
Rhino viewport
= False: If no objects were selected

Warnings & Errors

= Warning: If no objects were selected

Example
rm.add label ()

This allows the user to select multiple objects (as ‘count’ is set to True by default). Each object will have the
function prompting the user for the desired label text.

add_longest_line

Adds longest-line predicate tag to line segment/s. This is indicated as 'longest' within predicates text ('#()') in
the visual text dot assigned to geometry.

Syntax

rm.add longest line(tagSelf = True)
Parameters

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns

= True: If successful

= False: If no objects were selected

Warnings & Errors

= TypeError: If any of the objects selected by the function are not straight curves (line segments)

43



Example
rm.add longest line()

The user is then prompted to select which Rhino objects to add the predicate tag to.

add_max_line

Adds max-line predicate tag to line segment/s. This is indicated as ‘max’ within predicates text ('#()') in the
visual text dot assigned to geometry.

Syntax
rm.add max line(tagSelf = True)
Parameters

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns

= True: If successful

= False: If no objects were selected

Warnings & Errors

= TypekError: If any of the objects selected by the function are not straight curves (line segments)

Example
rm.add max line ()

The user is then prompted to select which Rhino objects to add the predicate tag to.

add_no_label

Adds no-label predicate tag to geometry to constrain matching to geometries without label attributes. This is
indicated as 'no_label' within predicates text ('#( )') in the visual text dot assigned to geometry.

Syntax

rm.add no label (tagSelf = True)
Parameters

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns
= True: If successful

= False: If no objects were selected

44



Warnings & Errors

= None

Example
rm.add no_ label ()

The user is then prompted to select which Rhino objects to add the no-label tag to.

add_normal

Adds normal directive tag to line segments (if 2D) or plane segments (if 3D). This is indicated as ‘normal *
<group_name>’ within the directives text ('#()') in the visual text dot assigned to geometry. Note that if for the
value(s) for the range of the length of the new normal line, if these inputs exceed 20 characters, then they are
not included in the visual text dot text of the geometry.

Syntax

rm.add normal (rhsTag, length, targetCoords = None, tagSelf = True)
Parameters

= rhsTag: Text string that will be the tag name of the new normal line

= length: A single integer, float, description string or a list/tuple of two integers, floats, description
strings (the two elements need not necessarily be the same data type); if a list/tuple is given as input,
then the first element is considered the lower bound of the range for the length of the normal line
segment to be generated, and the second element the upper bound of the same range

= targetCoords: List/tuple of two numbers (<x, y> coordinates) or Rhino GUID (point or text dot) that will
represent the directional vector that the normal line segment will be perpendicular to; this directional
vector must exist in the chosen geometry, be it a line segment or a plane segment

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns

= True: If successful

= False: If no objects were selected

Warnings & Errors

= TypeError:
© If the input for ‘rhsTag’ is not a text string

o If the input for length is neither a single integer, float, description string nor a list/tuple of two
integers, floats, description strings (the two elements need not necessarily be the same data

type)
= Value Error:

O If there are more than two elements in the input for length of the new normal line segment

©  If any of the objects selected by the function are not straight curves (line segments)

45



Example

The following function call and inputs adds a directive to generate a new normal line segment with length 10

based on a pre-existing line segment with the directional vector <20, 15> present inside it. The new normal line
segment will have the tag name ‘lineSegment-2’.

rm.add normal (‘2’, 10, (20,15))

Alternatively, the function call and inputs adds a directive to generate a new normal line segment with its
length between 10 and 15 based on a pre-existing plane segment. The new normal line segment will have the
tag name ‘lineSegment-2".

rm.add normal (‘2’, [10, 15])

add_point_on_line

Adds point-on-line directive tag to line segment(s)/polyline(s). The upper and lower bounds for the range of
segment values for point placement is inputted to function call. Afterwards, the user is prompted to select the
line segments which will have this directive added to their UserText. This is visually indicated as 'point_on_line
A <group_name>' within the directives text ('#()').

Syntax

rm.add point on line(segl = None, seg2 = None, tagSelf = True)
Parameters

= segl: Afloat value (0 < x < 1) that serves as the lower bound of the segment range where the new
point will lie on the line segment

= seg2: Afloat value (0 < x < 1) that serves as the upper bound of the segment range where the new
point will lie on the line segment

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns

= True: If successful

= False: If no objects were selected

Warnings & Errors

= TypeError: If any of the objects selected by the function are not straight curves (line segments)

= ValueError: If either ‘segl’ (lower bound) or ‘seg2’ (upper bound) are not float data types within the
range (0 <x<1)

Example

rm.add point on line(0.1)

46



add_shortest_line

Adds shortest-line predicate tag to line segment/s. This is indicated as ‘shortest within predicates text ('#()') in

the visual text dot assigned to geometry.

Syntax

rm.add shortest line(tagSelf = True)
Parameters

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the

currently value inside sc.sticky[‘keyCount’]
Returns

= True: If successful

= False: If no objects were selected

Warnings & Errors

= TypekError: If any of the objects selected by the function are not straight curves (line segments)

Example

rm.add _shortest line()

The user is then prompted to select which Rhino objects to add the predicate tag to.

add_void

Adds void predicate tag to collection of points/text dots/line segments/plane segments that form a closed
polygon. The user is prompted to select the geometry that will compose the void area. This may be composed
of points, line segments or a plane segment (mesh, BREP, surface). This is indicated as 'void' within predicates
text ('#()'), and indicates which void group it belongs in the visual text dot assigned to the geometry.

Syntax

rm.add void(sortType = [], detectIntersection = False)
Parameters

= sortType: List of text strings, where each element is the name of a sort type that should not be present
inside the area delineated by the void coordinates

= detectIntersection: Boolean value; True — checks if geometry given as input for void coordinates is self-
intersecting and does not proceed with adding void predicate tag to geometry if yes; False — does not
check if input geometry is self-intersecting

Returns

= True: If successful

= False: If no objects were selected

47



Warnings & Errors

=  ValueError:

© If a sort type listed in the input ‘sortType’
= TypeError:

o If the input for ‘sortType’ is not a text string or a list of text strings
= Warning:

© If no geometry was selected

O If the selected geometry were all points and do not form a polygon (at least a triangle) or
there are not enough points to form a polygon (at least three non-collinear points are
required)

o If the selected geometry were all line segments and there are not enough line segments to
form a polygon (at least three non-collinear line segments are required)

©  If detectIntersection is True, then if any of the lines intersect one another

Example
rm.add void([‘lineSegment-A3D’, ‘point-V3D’'])

This means that the area of the polygon delineated by the void coordinates as vertices cannot have any
individuals with the sort type ‘lineSegment-A3D’ or ‘point-V3D’ inside.

add_weight

Adds width (weight) to line or grayscale (weight255) to point or text dot in the visual text dot assigned to
geometry. If several objects are selected, then the function goes through each object in the list of Rhino GUIDs
and highlights them with yellow, to help the user recognize which Rhino object is currently being altered. The
user is prompted for the target weight (either line width, if the Rhino object is a line segment, or gray scale, if
the Rhino object is a point or a text dot)

Syntax

rm.add weight (several = True)

Parameters

= several: Boolean value: True (default) — the user may select several objects to add a weight attribute
to; False — the user may select only one object to add a weight attribute to

Returns

= True: If successful

= False: If no objects were selected

Warnings & Errors

= TypeError:

o If input for intended line width is not within the range 0.0 (mm) to 2.0 (mm) or is not a float
data type

© Ifinput for intended gray scale value (for points and text dots) is not within the range 0 to 255
or is not a positive integer

48



= Warning:

© If no geometry was selected

Example

rm.add weight ()

The user will then be prompted to select the objects whose line width or color will be altered. If several objects
are selected, the function goes through them one by one, highlighting the object in question in yellow and
prompting the user for the desired line width or gray scale value. Once the object has been altered, it is
reverted to its original color, if it is a line segment.

analysis

Analyzes a list of Rhino GUIDs and moves points/extends lines to intersect directly with each other (for lines to
intersect with each other, for points to line on lines) in the visual text dot assigned to geometry. The precision
value is x < 1% of the length of the line or Rhino's unit setting. The GUIDs in the list are modified to fit more
accurately with each other (points lying on lines, line segment intersection with other line segments).

Syntax

rm.analysis (objects)
Parameters

= objects: List of Rhino GUIDs to be analyzed
Returns

= objects: List of Rhino GUIDs after modification, if successful

= False: If number of Rhino GUIDs is less than two (2)

Warnings & Errors

= Warning: if number of Rhino GUIDs in input list is less than two (2)

Example

shape = rs.GetObjects|()

shape modified = rm.analysis (shape)

clear_shape

Clears a list of Rhino objects. This method takes as input a list/dictionary/tuple of Rhino GUIDs or a single Rhino
GUID and deletes it from the Rhino workspace.

Syntax

rm.clear shape (guids)
Parameters

= guids: List of Rhino GUIDs to be deleted from workspace

49



Returns

= True: If Rhino GUID/s is/are successfully deleted from viewport

= False: If no objects were selected

Warnings & Errors

= TypekError: If input is not a list/tuple/dictionary or a single Rhino GUID

= Warning: If no objects were selected

Example

shape = rs.GetObjects (‘'Select shapes to clear from Rhino viewport’)

rm.clear shape (shape)

delete description

Removes description data from the UserText of the Rhino Object and from the visual text dot assigned to
geometry, if any are present. The user is first prompted for the object/s to remove descriptions from.
Afterwards, the function goes through every object and displays what descriptions are currently present in the
UserText of the object. The user is then prompted for an integer input corresponding to the description data
they wish to remove. If the Rhino Object is a text dot and no text is left in the UserText after the removal of the
label, the text dot is changed to a point.

Syntax

rm.delete description()
Parameters
= None

Returns

= True: if successful

= False: If no objects were selected

Warnings & Errors

= ValueError: If the input number given by the user does not correspond to any description displayed by
the function

= TypekError:
© If any object in the inputted list is not a point, text dot, curve, BREP, surface or mesh
O If the input for which predicate/directive data to remove is not an integer

= Warning: If no objects were selected

Example

rm.delete description ()

The function then displays which descriptions are currently present in the Rhino object and prompts the user to
enter an integer value corresponding to the description they wish to remove from the UserText of the Rhino
GUID.

50



delete_label

Removes label data from the UserText of the Rhino Object and from the visual text dot assigned to geometry, if

any are present. The user is first prompted for the object/s to remove labels from. Afterwards, the function
goes through every object and displays what labels are currently present in the UserText of the object. The user
is then prompted for an integer input corresponding to the label data they wish to remove. If the Rhino Object
is a text dot and no text is left in the UserText after the removal of the label, the text dot is changed to a point.

Syntax
rm.delete label ()
Parameters

= None
Returns

= True: if successful

= False: If no objects were selected

Warnings & Errors

= ValueError: If the input number given by the user does not correspond to any label displayed by the
function

= TypeError:
o If any object in the inputted list is not a point, text dot, curve, BREP, surface or mesh
O If the input for which predicate/directive data to remove is not an integer

= Warning: If no objects were selected

Example

rm.delete label ()

The function then displays which labels are currently present in the Rhino object and prompts the user to enter
an integer value corresponding to the label they wish to remove from the UserText of the Rhino GUID.

delete_pred_dir

Removes predicate/directive data from the UserText of the Rhino Object and from the visual text dot assigned
to geometry, if any are present. The user is first prompted for the object/s to remove predicates/directives
from. Afterwards, the function goes through every object and displays what predicates/directives are currently
present in the UserText of the object. The user is then prompted for an integer input corresponding to the
predicate/directive data they wish to remove. If the Rhino Object is a text dot and no text is left in the UserText
after the removal of the label, the text dot is changed to a point.

Syntax

rm.delete pred dir()
Parameters

= None

51



Returns

= True: if successful

= False: If no objects were selected

Warnings & Errors

= ValueError: If the input number given by the user does not correspond to any label displayed by the
function

= TypeError:
o If any object in the inputted list is not a point, text dot, curve, BREP, surface or mesh
O If the input for which predicate/directive data to remove is not an integer

= Warning: If no objects were selected

Example

rm.delete pred dir()

The function then displays which predicates/directives are currently present in the Rhino object and prompts
the user to enter an integer value corresponding to the label they wish to remove from the UserText of the
Rhino GUID.

delete tag

Removes geometry tag (usually encased inside ‘line()’, ‘point( )’, or ‘plane()’) from Rhino Object and from the
visual text dot assigned to the object, if any are present. The user is prompted for the object/s to remove tags
from, and the tag is removed from both the visual text dot of the Rhino Object as well as its UserText data. If
the Rhino Object is a text dot and no text is left in the UserText after the removal of the label, the text dot is
changed to a point.

Syntax

rm.delete tag()
Parameters

= None
Returns

= True: if successful

= False: If no objects were selected

Warnings & Errors

=  Warning:
© If no objects were selected

o If the object does not have any ‘tag’ key in its UserText dictionary

Example

rm.delete tag()

The user is then prompted to select objects to remove tags from.

52



clear_everything

Deletes all Rhino objects in Rhino workspace, and clears all registers (sort, rule, flow, form, sdiParser.forms,

sdIParser.flows, sdlParser.rules) in the back-end.

Syntax

rm.clear everything()
Parameters
= None

Returns

= True: if successful

Warnings & Errors

=  None

Example

rm.clear everything()

tag

Adds a tag to a Rhino object or changes the tag stored in a Rhino object and changes the visual text dot
assigned to the Rhino object accordingly. Data within the Rhino object’s user text pertaining to the directive
‘normal’, and that is reliant on the tag of the Rhino object, are also changed.

Syntax
sgi.tagl()
Parameters

= tagSelf: Boolean value; True (default) — user may input the desired tag name for the selected
geometry; False — method will generate the tag name for the selected geometry based on the
currently value inside sc.sticky[‘keyCount’]

Returns

= True: if successful

Warnings & Errors

=  None

Example

sgi.tagl()
The user is then prompted to select objects whose tags they wish to change or remove. If no input is given
when the user is prompted to enter the new tag of a Rhino object, then the tag data item is deleted completely

from the Rhino object.

53



54



FAQ

1. | get empty sortal shapes whenever | use functions like ‘create_shape’ or ‘create_shape_ag’. What do | do

There are two options you may do in this case. The first one is to rerun your code by using the ‘Reset and
Debug’ option in the Rhino Python compiler, pictured below in the orange box:

2| b igm- |

The second option is to shut down Rhinoceros completely, re-open the Rhino and Python files, and rerun your
code.

2. The edges of some of my line segments do not meet each other or | have generated shapes where the
points do not exactly lie on the lines. How can | fix this?
Due to the nature of Rhinoceros, the dimensions of the last few digits of its measurements may fluctuate and

thus affect computations in the Sortal Library, since the back-end precision is fixed. You may change the

?

precision of comparison (the number of decimal places the back-end will consider when performing operations)

using ‘set_precision’. Alternatively, you may set the dimension of your Rhinoceros application to a larger base

dimension (e.g. cm instead of mm).

3. Canlget some help?

You can post a message on the SortalGl forum (http://sortal.org/feedback/) or e-mail stouffs@sortal.org.

55


http://sortal.org/feedback/
mailto:stouffs@sortal.org

Annex A: About Sortal Structures

This annex explains about sortal structures, or sorts, the various types of sorts, the various behavioral

categories and provides an overview of all data types or characteristic individuals that exist to define sorts.

Sortal structures and behavioral categories

Sortal structures, also denoted as sorts, are representational structures defined as formal compositions of

other, primitive, sortal structures. While the terms sortal structures and sorts may be used interchangeably, the

term sortal structure emphasizes the formal compositional character of the representational structure, while

the term sort refers to the universe of entities (called individuals) as represented by the structure.

Sortal structures are class structures, specifying either a single data type or a composition of other
class structures. For instance, data types such as points, labels, and lines all define sorts.

A sortal structure can also be considered as a hierarchical structure of properties, where each property
specifies a data type (a primitive sort). Properties can be collected (a disjunctive sort) and a collection
of one or more properties can be assigned as an attribute to another property (an attribute sort).

A sortal description is a description of a data construct, corresponding to a sortal structure, and
expressed as an individual or form (or metaform) of a sort.

An Individual is the basic element of a sort, that is, an instance of the class structure. For example, a
point is an individual of the sort of points. Every sort also allows for a nil value or individual. When
taking the complement of an individual with respect to another individual, or determining the
common part of two individuals, the result may be empty or nil.

A form is a collection of individuals of the same sort, e.g., a set of points.

A metaform is a collection of forms corresponding to the different component sorts of a disjunctive
sort, e.g., a set of points and line segments.

We distinguish four types of sorts: primitive sorts, attribute sorts, disjunctive sorts, and compound sorts.

A primitive sort specifies a single data type. An individual of a primitive sort has a data value of the
specified type.

An attribute sort is a subordinate, semi-conjunctive composition of a primitive sort (its base) with any
other sort (its weight) under the object-attribute relationship. An individual of an attribute sort is an
individual of the base sort (the associate individual) that is assigned a form (a collection of zero, one or
more individuals) of the weight sort as an attribute (the attribute form). If the attribute form is empty,
it may be omitted and the individual is treated as an individual of the base sort only, rather than of the
attribute sort.

A disjunctive sort is a co-ordinate, disjunctive composition of any number of sorts. A form of a
disjunctive sort is a composition of forms from the respective component sorts, and is called a
metaform. The representation of each component sort in the composition of forms is optional.

A compound sort is a co-ordinate, disjunctive composition of (disjunctive) sorts. The distinction
between disjunctive and compound sorts recognizes the fact that a single sortal structure may be
adopted to represent a collection of ‘drawings’. Where the compound sort represents the collection of
drawings, each (disjunctive) component sort represents a single drawing. In the case of shape
matching for rule application, shape elements from the same component sort match under the same
transformation, while shapes from different component sorts match under separate transformations.

56



Each sort may be specified a name, for the purpose of semantic disambiguation. This is a requirement for every

primitive sort (or aspect).

Each primitive sort is defined by its characteristic individual and its behavioral category. In addition, the

definition of a primitive sort may include one or more arguments, constraining the possible data entities this

sort may represent. For example, the definition of a sort of weights may include the specification of an upper

bound for the numeric weight values as argument.

The characteristic individual defines the representational aspect of a primitive sort, specifically, the
representation of its individuals' data values and behavioral methods. It is specified in its class

implementation. Examples of characteristic individuals are points, line segments and labels.

The behavioral category of a primitive sort specifies the operational behavior of its forms and is
assigned in a categorization of the characteristic individuals. Specifically, the behavioral category
prescribes the behavior of forms under common arithmetic operations (sum, difference and product/
intersection), their canonical (maximal) form, and when a form is part of another form.

The behavior (of forms) of a composite sort (whether an attribute or a disjunctive sort) derives from the

behavior of its component sorts depending on the compositional relationship.

We distinguish six behaviors for primitive sorts: discrete, ordinal, interval, cyclical, areal and custom, and their

respective forms.

A discrete form is a form with a discrete operational behavior, corresponding to a mathematical set: an
individual is part of another individual, only if these are identical; a form is part of another form, if
every individual of the first form is also an individual of the second form. The operations of sum,
difference and product on forms correspond to set union, difference and intersection, respectively:
under the operation of sum, forms are merged and duplicate individuals are removed; under the
operation of product, only identical individuals contribute to the result. A discrete form is maximal if
no two individuals are identical.
In other words, if x and y denote two forms of a sort with discrete behavior, and X and Y denote the
respective sets of individuals, then (x : X specifies X as a representation of x)
X:XAy:Y = xXsyeXcy

X+y : XUY

xX-y:X/Y

X-y:XnyY
In the case of an attribute sort, an individual is part of another individual, only if these are identical
and the former's attribute form is part of the latter's attribute form. Under the operation of sum,
identical individuals have their attribute forms combined under the (corresponding) operation of sum.
Under the operation of product, only identical individuals contribute to the result; their attribute forms
combine under the (corresponding) operation of product. The resulting attribute form may be empty.

An ordinal form is a form with an ordinal operational behavior: an individual is part of another
individual, only if its ordinal value is smaller than or equal to the latter's ordinal value. Since, for any
two ordinal values, one is always less than or equal to the other, an ordinal form is maximal if it
contains only a single individual. Thus, a form is part of another form, if the former's individual is part
of the latter's individual. Under the operations of sum and product, the resulting form's individual has
as ordinal value the largest and, respectively, smallest of both ordinal values.

Two variant ordinal forms are distinguished from the operation of difference. In both variants, the
difference of a smaller ordinal value with respect to a larger or equal ordinal value is nil. In variant 1,
the difference of a larger ordinal value with respect to a smaller ordinal value is the larger ordinal
value, whereas in variant 2, it is the numeric difference of the two ordinal values.

x:{m}ny:{n}=> x<yemsn

57



x+y : {max(m, n)}
x-y: {}ifm<n,else{m}?
{}ifm<n, else{m-n}?2

x-y : {min(m, n)}
In the case of an attribute sort, an individual is part of another individual, if its ordinal value is smaller
than or equal to the latter's ordinal value and its attribute form is part of the latter's attribute forms.
Under the operations of sum and product, the resulting form's individual has as ordinal value the
largest and, respectively, smallest of both ordinal values, while its attribute form is the result of the

respective operation on both attribute forms.

An interval form is a form with a one-dimensional embedding operational behavior: an interval is part
of another interval if it is embedded in the other interval; a form is part of another form if every
interval in the first form is embedded in an interval in the second form. Under the operation of sum,
forms are merged and adjacent (on the same carrier) or overlapping intervals are combined into a
single interval; under the operation of product, the result is composed of the common parts of
overlapping intervals. An interval form is maximal if no two intervals are adjacent (on the same carrier)
or overlap.
Let B[x] denote the set of boundary elements of a form x of intervals and, given two interval forms x
and y of the same sort, let Iy denote the set of boundary elements of x that lie within y, Oy the set of
boundary elements of x that lie outside of y, M the set of boundary elements of both x and y where
the respective intervals lie on the same side of the boundary element, and N the set of boundary
elements of both x and y where the respective intervals
lie on opposite sides of the boundary element; then f{ 1 ;_ c 1 - M
x:Bx]Ay:Bly] > x<yehLk=0A0,=0AN=0 j—n:t“_% H'—‘i‘_H

x+y: Blx+y]=0xUO,UM ' ) Y by

X-y : Blx-y]=0xUIl,UN

x-y:Blx-yl=LkUlLUM
In the case of an attribute sort, an interval is part of another interval if it is embedded in the other
interval and the former's attribute form is part of the latter's attribute form. Under the operation of
sum, overlapping intervals are split at the mutual boundary points and identical parts are combined
into one, with the attribute forms combined under the (corresponding) operation of sum. Adjacent
intervals (on the same carrier) that have identical attribute forms are also combined. Under the
operation of product, the result is composed of the common parts of overlapping intervals, with the
attribute forms combined under the (corresponding) operation of product. The resulting attribute form
may be empty. An interval form is maximal if no two intervals overlap and if adjacent intervals (on the
same carrier) have non-identical attribute forms.

A cyclical form is a form with a one-dimensional cyclical embedding operational behavior. This
behavior is quasi-identical to the one-dimensional embedding operational behavior for interval forms
as described above, except that for an interval form, all intervals can be ordered based on the starting
point of the interval in order to simplify the process of identifying adjacent and overlapping intervals.
In the case of the cyclical embedding operational behavior, such ordering must necessarily take into
account that the first and last intervals may also be adjacent or overlap.

An areal form is a form with a two-or-higher-dimensional embedding operational behavior. An areal
form behaves similar to an interval form: an areal is part of another areal if it is embedded in the other
areal. Under the operation of sum, forms are merged and areals that overlap or share boundary (on
the same carrier) are combined into a single areal. An areal form is maximal if no two areals overlap or
share boundary (on the same carrier).

Let B[x] denote the form of boundary segments of a form x of areals (e.g., if x is a form of plane

58



segments, B[x] will be a form of line segments) and, given two areal forms x and y of the same sort, let
Iy denote the form of boundary segments of x that lie within y, Ox denote the form of boundary
segments of x that lie outside of y, M the form of boundary segments of both x and y where the
respective areals lie on the same side of the boundary segment, and N the form of boundary segments
of both x and y where the respective areals lie on opposite sides of the boundary segment; then
x:B[x]Ay:Bly] > x<ye©Lk=0A0,=0AN=0

X+y : Blx+y]=0x+0,+ M

X-y : Blx-yl=0x+Ily+N

Xy :Bx-yl=k+l,+ M
In the case of an attribute sort, an areal is part of another areal if it is embedded in the other areal and
the former's attribute form is part of the latter's attribute form. Under the operation of sum,
overlapping areals are split at their mutual boundaries and identical parts are combined into one, with
the attribute forms combined under the (corresponding) operation of sum. Areals that share boundary
(on the same carrier) and have identical attribute forms are also combined. An areal form is maximal if
no two areals overlap and if areals that share boundary (on the same carrier) have non-identical

attribute forms.

A color form is a form with a custom, ordinal-like behavior. The specification of a color sort requires
the specific behavior to be specified, i.e., whether the sum of two color values is the average RGB
value, the maximum RGB value, the sum of the RGB values, or defined as a function of the respective
alpha values.

An enumerative form is a form with a custom, ordinal-like behavior. An enumerative value is a value
from among an enumerated set. The specification of an enumerative sort requires the enumeration of
the values as well as their mutual ranking. The enumeration values are specified as a set of identifiers,
and their ranking as an array of enumeration values resulting from the addition of every combination
of two values (ordered as a matrix, corresponding the original enumeration ordering). For instance,
given an enumeration of black and white (in that order), a ranking array of black, black, black and
white would mean black dominates white as any addition of two values, except for white and white,
results in black. The product of two enumerative values is always nil, unless the two enumerative
values are identical. An enumerative sort supports the specification of qualitative aspects in "color
grammars" (Knight 1989; 1993).

Data types and characteristic individuals

The table below specifies all characteristic individuals available in the Python sortal library. Geometric types can
be specified within a two-dimensional or three-dimensional space; their characteristic individuals are also
distinguished in the context of parametric and non-parametric rules (e.g., point3D versus pointP3D). Do note
that not all characteristic individuals are available through the SortalGl API.

SortalGl | Data type Space | Characteristic Behavior/form
individual
v points 2D point2D discrete
pointP2D
3D point3D
pointP3D
lines L 2D line2D discrete

59



— unpbounaea

3D line3D
line segments 2D lineSegment2D interval
— bounded and half-bounded )
lineSegmentP2D
3D lineSegment3D
lineSegmentP3D
planes 2D plane2D discrete
— unbounded
3D plane3D
plane segments 2D planeSegment2D areal
— bounded, rectilinear
planeSegmentP2D
3D planeSegment3D
planesegmentP3D
circles 2D circle2D discrete
— closed, planar X
circleP2D
3D circle3D
circleP3D
circular arcs 2D circularArc2D cyclical
— planar i
3D circularArc3D
ellipses 2D ellipse2D discrete
— closed, planar X
ellipseP2D
3D ellipse3D
ellipseP3D
elliptical arcs 2D ellipticalArc2D cyclical
— planar T
3D ellipticalArc3D
Bezier curves 2D bezier2D interval
— quadratic )
bezierP2D
3D bezier3D
bezierP3D
labels label discrete
— alphanumeric
numeric values numeric discrete
weights weight ordinal’
— non-negative, numeric - )
rWeight ordinal?
enumerated values enumerative custom
color values color custom
— RGB or HSV
shape descriptions description discrete

60



Annex B: About Shape Rules and Description Rules

This annex explains about shape rules and description rules.

A rule is conceptually specified in the form lhs — rhs, where the left-hand-side (/hs) of the rule specifies the
pattern to be matched under some transformation and the right-hand-side (rhs) specifies the resulting pattern
that replaces the matched pattern under the same transformation. That is, applying a rule a — b to a given
shape s involves determining a transformation f such that f(a) is a part of s (f(a) < s), following which s is
replaced by s - f(a) + f(b).

A shape rule is commonly understood to imply that both /hs and rhs constitute a geometry, possibly including
non-geometric attributes, e.g., labels or descriptions. A description rule, then, implies that both /hs and rhs
constitute a shape description of the same shape description type. Combining a shape rule with one or more
description rules specifies a compound rule, where the different component rules operate in parallel, although
they may interact with each other.

Shape rules

Two types of rules are distinguished, parametric rules and non-parametric rules. The latter are the easiest to
understand. In the case of a non-parametric rule, the pattern specified by the /hs of the rule must match a part
of the given shape under a similarity transformation (translation, rotation, reflection and/or uniform scaling).
That is, when matching for a square of line segments, any square of line segments from the given shape will do,
even if these line segments extend beyond the corner points of the square. The same applies when matching
for a rectangle, however, only rectangles with the same ratio between length and width will be matched.

A parametric rule matches a much larger variety of shapes. In principle, when matching a triangle of line
segments, any triangle of line segments in the given shape will be matched, irrespective of its shape. The
corresponding transformation is a topological transformation though there is no mathematical representation
for such a transformation (unlike for a similarity transformation). However, some constraints do apply.
Specifically, parallel and perpendicular lines are automatically identified in the /hs and considered as constraints
for matching. Thus, specifying a right-angled triangle as the /hs will only match right-angled triangles in the
given shape, however, specifying an equilateral or isosceles triangle as the /hs will have no effect, any triangle in
the given shape will be matched.

While in some cases it may be difficult to predict the exact matching results of the /hs of a parametric rule, the
matching mechanism broadly follows the following steps:

Identify all (infinite) lines that carry any line segment in the /hs.
Identify all (infinite) lines that carry any line segments in the given shape.
Enumerate all combinations of lines from the given shape that match the number of lines for the /hs.

el A

Eliminate all combinations that do not preserve parallelism and perpendicularity between lines as

specified by the /hs.

5. Identify all intersection points of (infinite) lines in the /hs and note whether the intersection point falls
inside, outside or is an endpoint of any line segment on each infinite line.

6. Do the same for the remaining combinations of (infinite) lines for the given shape:

a. Eliminate any combinations where an inside intersection point for the /hs is not matched with
an inside intersection point for the given shape.

b. Eliminate any combinations where an intersection point that is an endpoint for the /hs is not
matched with an intersection point that is either an endpoint or an inside point for the given
shape.

61



7. For the Ihs, Identify all endpoints of line segments on these (infinite) lines and note their ordering also
with respect to the intersection points.

8. Do the same for the given shape and eliminate any remaining combinations where two intersection
points in the /hs are contained within a single line segment and the corresponding intersection points
in the given shape are not.

A similar mechanism applies to other spatial data types, e.g., plane segments.

Descriptions and description rules

Descriptions follow a strict format that allows them to be interpreted and matched by the sortal library.

Parametric descriptions

Descriptions are parametric in nature, that is, when adopted as the left-hand-side (/hs) of a description rule, a
description may contain one or more parameters that can be matched onto parts of the description under
investigation. When adopted as the right-hand-side (rhs) of a description rule, a description may also contain
parameter references although the parameters should have already been specified in the corresponding /hs,
such that the value of the parameter reference in the rhs can be taken from the matching of the /hs. Obviously,
descriptions that do not form part of a description rule should not contain any parameters or parameter
references, otherwise matching will necessarily fail.

Example (‘description’ is the description sort name and ‘a’ is a parameter):

description: a

Description literals

Literal values in descriptions may be numbers, double quoted strings or predefined keywords. The latter include
e, nil, pi, true and false. e and nil are equivalent and represent an ‘empty’ entity. Depending on the context, the

‘empty’ entity may be interpreted to denote zero, an empty string or an empty tuple. The literals pi, true and

false denote the numbers ‘nt’, 1 and 0, respectively.

Examples:

status: true

list: e

Description tuples

While descriptions are specified in textual form, they can be structured as nested lists/tuples. Tuples should be
enclosed using either parentheses, angle brackets or square brackets. A top-level tuple may have the enclosing
brackets omitted. The entities within a tuple should be separated using either commas or semicolons. Again, a
top-level tuple may have the separating marks omitted.

Examples:

segment: <(0, 0), (1, 0)>

62



cubes: (“1:”, 10, “c¢:”, (0, 0), “r:”, 0) (“1:”, 10, “c:”, (5, 5), “r:”, 45)

Description parameters

A description parameter is a variable term that is specified by an identifier (any sequence of letters, digits and/
or underscores starting either with a letter or underscore) and embedded in the /hs of a description rule. Under
rule application, the parameter will be matched to a literal or a tuple. If the parameter forms part of a string
expression (see “String expressions” below), this literal can be any part of a literal string. If the parameter forms
part of a tuple, it matches a specific element of the tuple, unless it is signified by a kleene star (“*’) or a kleene
plus (‘+'), in which case it can match any subsequence of elements of the tuple, respectively, including or
excluding an empty subsequence. The use of a kleene star or kleene plus signifier allows for the matching of
variable length tuples.

Examples:

fixed length: <“Fixed”, varl> <var2, var3> vard

variable length: (0, 0) (x1, yl) remainder*

Parameter conditionals

Any description parameter may be specified a conditional that constrains the possible values of this parameter.
The conditional must follow the parameter and both must be separated only by a question mark (‘?’). The
conditional may be either enumerative or equational, or specify a range. An enumerative conditional explicates
a finite set of possible values. This set must contain either all numbers or all (double quoted) strings, and the
set must be enclosed using curly brackets. An equational conditional specifies a numeric equality or inequality
on the parameter, in the form of a conditional operator (=, ‘<>’, ‘<, ‘<=’, >/, or ‘>=") and operand. The operand
must be either a number or a numerical expression (see “Numerical expressions” below) operating on
numbers, parameters—previously defined—functions (see “Functions” below) and/or references (see
“References” below). Neither strictly enumerative, nor strictly conditional, it is possible to specify a range of
numeric values using a minimum and maximum value enclosed in square brackets.

Examples:
yard: value?{nil, “default”}
rooms: <nrooms?>2, rooms>

range: a?[0, 10]

Numerical expressions

A numerical expression can be embedded in a parameter conditional (in the /hs of a description rule) or in the
rhs of a description rule. A numerical expression can operate on literal keywords, numbers, numerical functions
(see “Functions” below), parameters and references (see “References” below). Numerical expressions may
include the operators plus (‘+’), minus (=), times (‘*’), divided-by (‘/’), modulo (‘%’) and to-the-power-of (‘*’),
with the usual operator precedence rules applying and the use of parentheses to override these rules where
necessary. Other operations are available in the form of numerical functions.

Example (‘vol’ and ‘length’ specify parameter references) :

volume: vol - pi”®2 * radius * (length / 2)"2 + 4 / 3 * pi * (length / 2)73

63



String expressions

A string expression in the /hs of a description rule enables the identification of substrings in the matching
process. Here, a string expression is a concatenation of literals and parameters (with or without conditional). A
parameter can match any substring, conditioned by the literal components (and the conditional, if present). A
concatenation of two parameters, without a literal separating the two parameters, would not be possible,
unless the first parameter has an enumerative conditional.

A string expressions in the rhs of a description rule can include literals, parameter references (see “References”
below), numerical expressions (enclosed in parentheses) and functions returning either numbers or strings (see
“Functions” below). The result is the concatenation of all components upon their evaluation into literal
numbers or strings.

Examples (the two lines below may form the /hs and rhs of the same description rule):

be: bel be20.%, ”.be2l.“-rafter beam in front, ”.be22.%“-rafter beam in back”
“with ”.c?=(be2l + be22)."“ columns”

be: bel be20.%, ".be2l.“-rafter beam abutting ”.be22 “with ”.(c + 1).%“ columns”

Tuple expressions

Tuple expressions allow one to append or prepend an entity to a tuple, join two tuples or add two tuples. The
operations to append, prepend and join all take the same format: two operands separated by a space. The
appropriate interpretation is arrived at by looking at the structure of the two operands. If the entity shares a
similar “structure” with the first element of the tuple, e.g., both are numbers or both are a tuple of similar
structure, then the entity will be appended or prepended to the tuple depending on its position with respect to
the tuple. If both operands are (nested) tuples, and the elements of both tuples have the same structure, then
a join operation will be assumed, combining the elements from both tuples in a new, single tuple. If no
structural similarity exists, then the expression will instead be interpreted as a tuple omitting enclosing brackets
and separator.

Adding two tuples adds the respective entities: if both entities are numbers they are summed; if both entities
are strings they must be identical; if both entities are tuples and have the same structure, then addition is
applied recursively.

Examples (the latter also includes a function):

position: a + (1, 0)

positions: a last(a) + (0, 1)

Functions

Functions allow for additional operations on numbers, strings and tuples, or a combination thereof. A function
returns a single value from any one of these three entity types. Strictly numerical functions include sqrt, sin, cos

and tan, asin, acos and atan, taking a single number as argument and returning a number. Functions operating
on strings include determining the length of a string and determining a left and right substring, with the length

of the substring specified as an additional argument to the function.

Functions operating on tuples include determining the length of a tuple, retrieving the first or last element of a

tuple, the minimum (min) and maximum (max) value inside a tuple, retrieving a tuple of only unique elements,

64



a tuple of pairs extracting consecutive elements pairwise from the operand tuple, a tuple of pairs (segments)

such that the jth pair is made up of the ith and (i+1)th elements of the operand tuple, a tuple of tuples
identifying loops in the operand tuple and a tuple of tuples representing an adjacencies matrix. The latter

function takes two arguments, a tuple of ‘enclosures’ and a tuple of ‘connecting’ elements.
Tuples of numbers can be considered as vectors, currently only vectors of length two or three are considered.

Functions on vectors require the different vectors to have the same length. These functions include determining
the magnitude (mag) of a vector or the distance (also mag) or angle between two vectors, adding (vectoradd) or

subtracting (vectorsubstract) two vectors, taking the dotproduct or crossproduct of two vectors or scaling a

vector by a number (vectorscale).

Finally, a function to generate a random number takes as input a tuple of two or three numbers, with the first

two specifying the range and the optional third one the step. More information on functions is provided further.

Examples:

positions: a (random(0,10,1), O0)

References

We distinguish three kinds of references. Firstly, parameter references are variable terms in the rhs of a
description rule that reference variable terms (parameters) in the /hs of the same (or another) description rule.
The value of the parameter reference in the rhs is the value of the same parameter in the /hs upon the
matching of the /hs.

Secondly, a description reference is similar to a parameter reference but references a variable term in another
description (that is part of the same rule). In such case, the parameter name must be preceded by the
description type name in order to identify the appropriate description and parameter. Alternatively, rather than
referencing a specific parameter, the entire value of the description can be referenced using the term value.

Finally, a shape reference similarly references data from the shape rule component of the rule. In order to
reference shape data, you must refer to the element type name (see Shape element types below). However,

this will only work if there is only one element of the specific type, otherwise the reference will be ambiguous.
In the case of points, you can disambiguate the point by additionally specifying its label, provided the point has
a label and the label is unique (see example below).

Example querying the positions of two points with given labels:

constraint: a?>=mag(point3D.value:labelD.value="1", point3D.value:labelD.value
://2//)

Shape element types and their available properties

Every geometric shape element type, except for circular arcs, is identified by two names. The first one should be
used within non-parametric rules and the second within parametric rules (pRule). Note that circular arcs are

not yet available within parametric rules and, if specified, will be ignored.

type name property output value

points point3D value vector tuple* position

65



pointP3D

line segments lineSeg3D root vector tuple* root point (nearest point to
the origin)
lineSegP3D direction vector tuple* direction vector
unitDir vector tuple* unit direction vector
start vector tuple* ‘smallest’” endpoint
end vector tuple* ‘sreatest’ endpoint
midpoint vector tuple* midpoint
length number line length
squareLength number square value of line length
plane segments planeSeg3D normal vector tuple* normal vector
area number plane area
planesegP3D outer tuple of vector list of outer boundary
tuples* vertices
circles circle3D normal vector tuple* plane normal vector
center vector tuple* center point
circleP3D radius number radius
diameter number diameter
circumference number circumference
area number area of the circle
ellipses ellipse3D normal vector tuple* plane normal vector
center vector tuple* center point
ellipseP3D foci tuple of vector list of focal points
tuples*
radii tuple of numbers list of longer and shorter
radii
area number area of the ellipse
circular arcs arc3D normal vector tuple* plane normal vector
center vector tuple* circle center point
radius number circle radius
diameter number circle diameter
circumference number circle circumference
start vector tuple* endpoint (ccw)
end vector tuple* endpoint (cw)
length number arc length
angle number angle covered by the arc (in
radians)
area number area covered by the arc
quadratic Bezier bezier3D normal vector tuple* plane normal vector
curves start vector tuple* 1st control point
bezierP3D controlPoint vector tuple* 2nd control point
end vector tuple* 3rd control point
vertex vector tuple* maximum or minimum of
the curve
labels/ labelD value string label or description string

descriptions as
point attribute

*A vector tuple is a tuple of two or three numbers.

66



A formal notation for descriptions

The table below presents a formal notation for descriptions and the left-hand-side (/hs) and right-hand-side
(rhs) of description rules in Extended Backus-Naur-Form (EBNF), including examples. The same non-terminals
serve to define the production rules for a description, an /hs and an rhs. Only when necessary are alternative
production rules defined for the same non-terminal; these are then identified by adding the terms description,
Ihs and rhs, respectively, enclosed within angle brackets (‘<...>’), as a prefix to the respective production rule.

typed-description = type-name .’ description .

type-name = identifier .

description = description-entity | description-sequence .
description-entity = literal | top-level-tuple .

description-sequence = ‘&’ description-entity ‘&’ { description-entity ‘&’ }.

literal = keyword-literal | number | string .
keyword-literal = ‘e’ | ‘nil’ | ‘pi’ | ‘true’ | “false’.
number = [ ‘~' ] digit-sequence [ *’ digit-sequence ] .
digit-sequence = digit { digit } .

digit="0"| ‘2’| 2|3 |4 |5 |6 |7 |‘8]|9.
string = ““’ { string-character } ' .

string-character = any-character-except-quote | ‘\" ““.

Example description-entity:

“centrally divided, double 1-rafter beam in front and back”
Example description-sequence:

&e&0&“nothing” &

top-level-tuple = tuple | unmarked-tuple .

tuple = /(" tuple-entities ‘)’ | ‘<’ [ tuple-entities ] ‘>’ | /[ [ tuple-entities] ‘]’ .
<description>tuple-entities = tuple-entity-sequence .

<lhs>tuple-entities = tuple-entity-sequence | tuple-expression .

<rhs>tuple-entities = tuple-entity-sequence | tuple-expression .

tuple-entity-sequence = tuple-entity ( { °’ tuple-entity } | { *; tuple-entity }) .
<description>tuple-entity = literal | tuple .

<lhs>tuple-entity = numeric-expression | string-expression | tuple .

<rhs>tuple-entity = numeric-expression | string-expression | tuple | function-returns-tuple .
unmarked-tuple = tuple-expression | tuple ( tuple | keyword-literal ) { tuple-entity } .

Example tuple:

(lll:ll' 10' llc:ll’ (O' O)I Ilr:ll' 0)

Example unmarked-tuple:

<" ll, IIO"' IIROI', IIRlIl> <IIOII’ 1’ 1, 1> <"ROII, 1, 1, 0> <llR1II, 1, O, 1>

description-rule-side = description-rule-entity | description-rule-sequence .
<lhs>description-rule-entity = literal | parameter [ ‘?’ conditional ] | string-expression | top-level-tuple .
<rhs>description-rule-entity = numeric-expression | string-expression | function-returns-tuple | tuple-
expression .

description-rule-sequence = ‘&’ description-rule-entity ‘&’ { description-rule-entity ‘&’ }.

67



parameter = identifier .

identifier = ( letter | underscore ) { ( letter | underscore | digit) }.

letter="A | ‘B |'C|D|E|F|C|HI|T|V]IK|L]|'M]|N]|O|P|Q|RI|S]|T]| VU]
VLW XY LK e | ]
L v W %y 7

’

underscore="‘_".

Example <lhs>description-rule-entity:
<“Fixed”, varl> <var2, var3> remainder
Example description-rule-sequence:
&al&a2&a3&a4&a5&ab6&a7&a8&

conditional = enumeration | equation | range.

enumeration = ‘{’ ( number-sequence | string-sequence ) ‘} .
number-sequence = number { ‘) number }.

string-sequence = string {  string }.

equation = comparator comparand .

comparator ==’ | ‘<>’ | <" | ‘<=" | > | >=.

comparand = number | ‘(" numeric-expression ‘)’ | parameter | reference .
range = ‘[ number ‘) number ‘]’ .

Example <lhs>description-rule-entity with enumeration:
yard?{nil, “default”}

Example <lhs>description-rule-entity with equation:
<nrooms?>2, rooms>

numeric-expression = term { addition-operator term } .

term = factor { multiplication-operator factor } .

factor = base { exponentiation-operator exponent } .

exponent = base .

base = keyword-literal | number | ‘(" numeric-expression ‘)’ | function-returns-number | parameter |
reference .

exponentiation-operator = ‘A’ ,

multiplication-operator=*"| /" | ‘%’ .

addition-operator = ‘+" | ‘—'.

Example numeric-expression:
vol — pi*2 * radius * (length / 2)22 + 4 / 3 * pi * (length / 2)3

string-expression = string-expression-entity { *’ string-expression-entity } .
<lhs>string-expression-entity = literal | parameter [ ‘?’ conditional ] .
<rhs>string-expression-entity = base | string | function-returns-string .

Example <rhs>string-expression:
“with ”.(c + 1).“ columns”

Example <lhs>string-expression:
“with ”.c?=(be21 + be22).” columns”

<lhs>tuple-expression = tuple-append | tuple-prepend .

<rhs>tuple-expression = tuple-addition | tuple-extension .

tuple-append = { tuple-entity } parameter ( ‘*’ | ‘+’ ) tuple-entity { tuple-entity } [ tuple-expression ] .
tuple-prepend = [ tuple-expression ] { tuple-entity } tuple-entity parameter ( ‘*’ | ‘+’ ) { tuple-entity }.
tuple-addition = [ parameter ] ‘+’ basic-tuple-argument .

tuple-extension = { tuple-entity } parameter { tuple-entity } [ tuple-expression ] .

68



Example tuple-prepend:

hlh2 H*

Example tuple-extension:

allast(al) + (0, 1)

Example tuple-addition:

bedrooms + <1, [(“couple”, 0), (“double”, 0), (“single”, 1)]>

function = function-returns-number | function-returns-string | function-returns-tuple .
function-returns-number = numeric-function | length-function | string-function-untyped | tuple-function-
untyped | vector-function | round-function | random-function .

numeric-function = ( ‘sqrt’ | ‘sin’ | ‘cos’ | ‘tan’ | ‘asin’ | ‘acos’ | ‘atan’) ‘(" numeric-expression ‘)’ | ‘atan2’ ‘(’
numeric-expression ;/ numeric-expression ‘)’ .

length-function = ‘length’ ‘(" ( string-argument | tuple-argument) ‘)’ .

<lhs>string-argument = string | function-returns-string | parameter | reference .

<rhs>string-argument = string-expression .

function-returns-string = string-function-returns-string | string-function-untyped | tuple-function-untyped .
string-function-returns-string = ( ‘left’ | ‘right’) ‘(" string-argument *’ numeric-expression ‘)’ .
string-function-untyped = ‘eval’ ‘(" string-argument ‘)’ .

tuple-function-untyped = ( ‘first’ | ‘last’ | ‘min’ | ‘max’ ) ‘(’ tuple-argument ‘)" .

<lhs>tuple-argument = basic-tuple-argument .

<rhs>tuple-argument = basic-tuple-argument | tuple-expression .

basic-tuple-argument = tuple | function-returns-tuple | parameter | reference .

function-returns-tuple = tuple-function-returns-tuple | function-returns-vector | string-function-untyped |
tuple-function-untyped .

tuple-function-returns-tuple = ( ‘unique’ | ‘segments’ | ‘pairwise’ | ‘loops’ ) ‘(' tuple-argument ‘)’ |
‘adjacencies’ ‘(" tuple-argument ‘/ tuple-argument ‘)’ .

function-returns-vector = two-vector-function | proj-vector-function | scale-vector-function | round-
function .

two-vector-function = ( ‘vectoradd’ | ‘vectorsubtract’ | ‘dotproduct’ | ‘crossproduct’ ) ‘(’ ( vector-argument *’
vector-argument | two-vector-argument ) ‘)’ .

vector-argument = ‘(“ numeric-expression ‘) numeric-expression [ °/ numeric-expression ] ‘)’ | function-
returns-vector | parameter | reference .

two-vector-argument = ‘(‘ vector-argument ‘/ vector-argument ‘)’ | parameter | reference.
proj-vector-function = ‘proj’ ‘(" ( vector-argument ‘’ vector-argument ‘/ vector-argument | three-vector-
argument) ‘)’ .

three-vector-argument = ‘(‘ vector-argument ‘ vector-argument ‘ vector-argument ‘)’ | parameter |
reference .

scale-vector-function = ‘vectorscale’ ‘(’ ( vector-argument ‘/ numeric-expression | vector-number-argument )
¥

vector-number-argument = ‘(“ vector-argument ’ numeric-expression ‘)’ | parameter | reference .
vector-function = ( ‘mag’ | ‘angle’ ) ( ‘(" vector-argument *’ vector-argument ‘)’ | ‘(" two-vector-argument ‘)’ ) .
round-function = ‘round’ ‘(“ ( numeric-expression | vector-argument ‘)’ .

random-function = ‘random’ ‘(" vector-argument ‘)’ .

Example function-returns-number:
length(“room”

Example function-returns-tuple:
adjacencies(a4, a5 a6)

69



reference = reference-to-lhs | reference-to-rhs.

reference-to-lhs = [ ‘lhs.’ ] reference-designator *’ ( ‘value’ | parameter | property ) [ “ filter] .

reference-to-rhs = ‘rhs.’ reference-designator *’ property [ *:’ filter ] .
reference-designator = identifier .

property = identifier .

filter = reference-designator “’ property filter-operator ( number | vector | string ).
filter-operator = ‘=" | ‘<>’ | '<=" | >=".

vector = [ rational ] /(’ rational */ rational */ rational ‘)" .

rational = [ *~’ ] digit-sequence [ //’ digit-sequence ] .

Example reference-to-lhs:
indices.value

Example reference-to-rhs:
rhs.sections.radius:labels.label="S"

70



Description functions

Numerical functions

function input output

abs 1 number The absolute value of the number

sqrt 1 number The square root of the number

sin 1 number The sine value of the angle (in radians)

cos 1 number The cosine value of the angle (in radians)

tan 1 number The tangent value of the angle (in radians)
asin 1 number The inverse sine of the number (in radians)
acos 1 number The inverse cosine of the number (in radians)
atan* 1 number The inverse tangent of the number (in radians)
atan2* 2 numbers The inverse tangent of the ratio (in radians)
todegree 1 number The value converted from radians in degrees
toradian 1 number The value converted from degrees in radians
round 1 number The value rounded to the nearest integer

*atan versus atan2:

atan takes 1 input and returns a result from quadrants 1 and 4

— atan2 takes 2 inputs (u, v) that specify a ratio u/v and returns a result from all quadrants

For example:
u v x=ufv atan(x) atan2(u,v)
2 1 2 1.1071487177940904 1.1071487177940904
-2 1 -2 -1.1071487177940904 -1.1071487177940904
2 -1 -2 -1.1071487177940904 2.0344439357957027
-2 -1 2 1.1071487177940904 - 2.0344439357957027

71



String functions

function input output

length 1 string The length of the string

left 1 string and 1 number The left substring of the specified length
right 1 string and 1 number The right substring of the specified length

Tuple functions

function input output
length 1 tuple The number of elements in the tuple
first 1 tuple The first element of the tuple
last 1 tuple The last element of the tuple
min 1 tuple The element of the tuple with minimum value
max 1 tuple The element of the tuple with maximum value
unique 1 tuple A tuple of only unique elements
pairwise 1 tuple A tuple of pairs extracting consecutive elements
pairwise from the operand tuple;
e.g. (a, b, ¢, d)->((a, b), (c, d))
segments 1 tuple A tuple of overlapping pairs extracting consecutive
elements from the operand tuple;
e.g., (a/ b/ C, d) -> ((al b)’ (bl C)I (CI d))
loops 1 tuple A tuple of tuples identifying loops in the operand

tuple; e.g., (a, b, c,d,a,e,f,c)->((a, b,c,d), (c,da,ce
f)

adjacencies

2 tuples: a tuple of “enclosures”

and a tuple of “connecting”
elements

A tuple of tuples representing an adjacency matrix

random 1 tuple: either 2 or 3 numbers A random number within the range specified by the
first two operands; the optional third operand is
considered as a step value for the random number
generation
round 1 vector tuple* A vector tuple with each value rounded to the nearest
integer
mag 2 vector tuples* The distance between the two vectors
angle 2 vector tuples* The angle between the two vectors (counterclockwise
angle from the first to the second vector) (in radians)
proj 3 vector tuples*: a direction A vector tuple representing the projection of the
vector, a root vector and a position vector on the line specified by the direction
position vector vector and root vector
vectoradd 2 vector tuples* A vector tuple representing the sum of the two vectors

72



vectorsubtract

2 vector tuples*

A vector tuple representing the difference of the two
vectors

vectorscale

1 vector tuple* and 1 number

A vector tuple representing the product of the vector
and the scalar

dotproduct 2 vector tuples* The number resulting from the dot product of the two
vectors
crossproduct 2 vector tuples* A vector tuple representing the cross product of the

two vectors

*A vector tuple is a tuple of two or three numbers; any function accepting (one or more) vector tuples will also
accept a single tuple collecting all operands

73



Annex C: Description of Sortal Imports

This annex describes the functions of sortal imports. These are mostly seen in the source code files of SortalGl

APl and Rhino methods.

IMPORT

DESCRIPTION

attributeSort

An attribute sort specifies a subordinate, semi-conjunctive composition of a
primitive sort (its base) with any other sort (its weight/label) under the object-
attribute relationship. An individual of an attribute sort is an individual of the base
sort (the associate individual) that is assigned a form (a collection of zero, one or
more individuals) of the weight/label sort as an attribute (the attribute form).

If the attribute form is empty, it may be omitted, and the individual is treated as an
individual of the base sort only, rather than of the attribute sort.

An attribute sort may have a name assigned. The attributeSort class represents an
attribute sort additionally by its base and weight sorts. The canonical version of an
attribute sort is the unnamed attribute sort of the canonical versions of the base and

weight sort.

bezierCurve2D,
bezierCurve3D,

These classes serve as base objects for quadratic Bezier curves, that contain their
properties, behaviors and methods. P2D and P3D indicate that parametric behavior

bezierCurveP2D, . .
. is enabled in the class.
bezierCurveP3D
circle2D, . . . . .
rcle3D These classes serve as base objects for circles, that contain their properties,
circlesb, . . . L .
rcleP2D behaviors and methods. P2D and P3D indicate that parametric behavior is enabled in
circleP2D,
. the class.
circleP3D

circularArc2D,
circularArc3D

These classes serve as base objects for circular arcs, that contain their properties,
behaviors and methods. P2D and P3D indicate that parametric behavior is enabled in

the class.

color

This class serves as base object for color values specified in RGB or HSV space, that
contain their properties, behaviors and methods.

An additional argument may specify the kind of ordinal behavior, i.e., whether the
sum of two color values is the average RGB value, the maximum RGB value, the sum
of the RGB values, or defined as a function of the respective alpha values.

compoundSort

The compoundSort class represents a disjunctive sort as an ordered set of
component sorts (disjunctive sorts only). In its canonical version, component sorts
cannot themselves be compound sorts.

coordinate

A class structure to contain and handle numerical data such as the <x.y.z> values of
vectors. It is specifically built to allow for easy conversion between numerical data

types such as float <-> integer.

74



IMPORT

DESCRIPTION

description

Compound data entity with discrete behavior. A description may contain tuples,
strings, numbers and certain literals. When part of a description rule, a description

may be parametric and contain expressions.

A description sort supports the specification of description functions/grammars
(Stiny 1981; Stouffs 2016a; 2016b)2.

disjunctiveSort

A disjunctive sort specifies a co-ordinate, disjunctive composition (under the
operation of sum) of any number of primitive and attribute sorts. A form of a
disjunctive sort is a composition of forms from the respective component sorts and
is called a metaform. The representation of each component sort in the composition
of forms is optional.

The disjunctiveSort class represents a disjunctive sort as an ordered set of
component sorts. In its canonical version, component sorts cannot themselves be
disjunctive sorts. If any component sort is an unnamed disjunctive sort, instead, its
components become part of the disjunctive composition.

If any component sort is part of another, unnamed component sort, the former
component sort is not included in the composition. A disjunctive sort may have a
name assigned.

ellipse2D,
ellipse3D,
ellipseP2D,
ellipseP3D

These classes serve as base objects for ellipses, that contain their properties,
behaviors and methods. P2D and P3D indicate that parametric behavior is enabled in
the class.

ellipticalArc2D,
ellipticalArc3D

These classes serve as base objects for elliptical arcs, that contain their properties,
behaviors and methods.

enumerative

This class serves as base object for enumerative values, that contain their properties,
behaviors and methods.

flow

A sequence of rule objects along with instructions for the ordering of rule objects,
the number of times a rule should be looped, e.g.:

‘r1r2(3) r5+ {r1 r2 r4*}

form

A form is a collection of one or more individuals from the same sort, e.g., a
collection of points defines a form of the sort of points.

Forms can be collected into metaforms or assigned as an attribute form to another
individual.

— A metaform is a collection of forms in accordance to a disjunctive sort.

— An attribute form is a form, or metaform, that is assigned as an attribute to
another individual, in accordance to an attribute sort.

A form is completely specified by its sort and its collection of individuals (or in the
case of a metaform, its collection of forms).

75



IMPORT

DESCRIPTION

label

A label is an alphanumerical data entity with a discrete behavior, i.e., the value of
the sum of two labels is the collection of both labels, unless both labels are identical,

in which case is either label.

The Label class extends on the Individual class. It defines the characteristic individual
for labels. A label is represented as a string. This characteristic individual accepts no

parameters. It specifies an {sortal.map. ExactMap} as default.

Forms of labels adhere to a discrete behavior.

line2D,
line3D

A line is a linear, connected, non-bounded planar curve with a discrete behavior.

The Line class extends on the Individual class. It defines the characteristic individual
for lines. A line is represented as a direction vector and a position vector specifying
the root of the line. This characteristic individual accepts no parameters.

It specifies a {sortal.map. similarityMap} as default. Forms of lines adhere to a
discrete behavior.

lineSegment2D,
lineSegment3D,
lineSegmentP2D,
lineSegmentP3D

lineSegment2D: A bounded (and half-bounded) line segment in two-dimensional

space, with interval behavior.

lineSegment3D: A bounded (and half-bounded) line segment in three-dimensional
space, with interval behavior.

A line-segment is a connected and bounded segment of a line with an interval
behavior. The line defines the co-descriptor of the line-segment, the boundary of the
segment is defined by the start and end positions of the line-segment. Vectors or
points may be used to define the start and end positions.

The lineSegment class extends on the Line class and implements the Interval
interface. It defines the characteristic individual for line-segments. P2D and P3D
indicate that parametric behavior is enabled in the class.

A line-segment is represented as a line with two rational scalars specifying the tail
and head relative to the line's root. This characteristic individual accepts no
parameters. It specifies a {sortal.map. similarityMap} as default. Forms of line-

segments adhere to an interval behavior.

planeSegment2D,
planeSegment3D,
planeSegmentP2D,
planeSegmentP3D

planeSegment2D: A bounded, rectilinear plane segment in two-dimensional space,
with areal behavior.

planeSegment3D: A bounded, rectilinear plane segment in three-dimensional space,
with areal behavior.

These refer to classes that serve as base objects for plane segments, that contain
their properties, behaviors and methods. P2D and P3D indicate that parametric
behavior is enabled in the class.

76



IMPORT DESCRIPTION

point2D: A point in three-dimensional space, with discrete behavior.

point3D: A point in two-dimensional space, with discrete behavior.
point2D, A point is a 0-dimensional geometric data entity with a discrete behavior. P2D and
point3D, P3D indicate that parametric behavior is enabled in the class.
pointP2D, . . ) T,

1tP3D The point class extends on the Individual class. It defines the characteristic individual

poin

for points. A point is represented as a position vector.

This characteristic individual accepts no parameters. It specifies a {sortal.map.
similarityMap} as default. Forms of points adhere to a discrete behavior.

primitiveSort

Specifies a single data type. An individual of a primitive sort has a data value of the
specified type.

rule

Rule class that takes as input the rule description, LHS and RHS sides of rule.

similarityMap

Mapping function used to distinguish that two individuals of the same sort type (e.g.
two line segments Is1 and Is2, or two points p1 and p2) are of the same sort type
despite being in different locations or having different coordinates, and that they can
be mapped together.

sdlParser

Class of methods that handles reading and writing SDL files. This class also stores
forms, rules, flows and sort types under the following dictionaries:
sdlParser.forms, sdIParser.rules, sdIParser.flows, sdIParser.sorts

sort

Sorts can be considered as class structures, specifying either a single data type or a
composition of other class structures. For instance, data types such as points, labels,
and lines all define sorts.

vector2D,
vector3D

A vector specifies a position in a two-dimensional Cartesian space.

If normalized, it only specifies a direction. The Vector class defines a vector as a pair
of {coordinate}'s and a w factor to reflect the vector's infinity characteristic

A Vector object is never modified after creation; thus, it can be used multiple times.

weight,
rWeight

A weight specifies a value for the shade of black to white of a plane or a line
segment, or perhaps the width of a line. Weight can be defined from a range of 0 to
the maximum value. A special version of weight, called rWeight, performs addition

and subtraction of weights arithmetically.

77



Annex D: Legacy Methods

The functions listed in this annex contain legacy behavior, i.e., they accept agnostic shape dictionaries as input

or produce them as output. These will eventually be phased out from the API but may be used to understand
the underlying structure of data conversion from Rhino GUIDs to sortal individuals. The only exception to this is
‘sortal_setup’. This is rather a convenience function that helps to setup the sortal library. However, it makes

assumptions that may not fit every user, as such it is only meant as an example and not part of the SortalGl API.

Summary of all methods

NAME

draw_result

draw results

find_rule_appns_a
g

create shape ag

convert to agnos
tic

maximalize_ag

sortal_setup

PURPOSE

Draws one rule application from list of rule applications, based on the index number
given by the user; this function goes together with find_rule_appns_ag as it extracts the

agnostic dictionary of the rule application from the output of find_rule_appns_ag

Draws all rule applications from list of rule applications; this function goes together with
find_rule_appns_ag as it extracts the agnostic dictionary of the rule application from the
output of find_rule_appns_ag

Generates the rule applications from a given rule-shape combination; takes as input rule
object or rule name, subshape name/agnostic dictionary and mainshape name/agnostic
dictionary; returns list of <transformation matrix, match, result, shape after application>

as agnostic dictionaries

Creates a shape object from the following inputs: shape name, shape agnostic object/

Rhino geometry, target sort type; shape is registered in form register under its name

Converts a list of Rhino GUIDs to their agnostic dictionary counterpart, based on the

target sort type specified by the user; the target sort type input may be left blank if
there is only one functioning geometric disjunctive sort active in 'rhino_shapes_c'

Maximalizes an agnostic object/set of Rhino geometries (if the latter, redraws the Rhino
geometries)

Sets up default sortal library background data, i.e. geometric sorts and their attributes;
this must be run at the start whenever using the sortal library; to enable external
descriptions, input a list of strings, where each element is the name of a description sort

type the user wishes to create

78



draw_result

Draws a single result (identified by the index input 'choice') in the Rhino workspace. The default is the first item

of the ruleAppns list. When a reference point is given (tuple/list/vector/point), the shape GUIDs are moved to
the reference point. The default reference point is the origin.

Syntax
sgi.draw_result (choice = 0, ruleAppns = [], refPoint =
Rhino.Geometry.Point3d(0,0,0), hide = True, layerNameMain = 'Default', shapelds
= [1)
Parameters
= choice: Index (integer) of chosen result from list of rule applications (tuple of agnostic dictionaries
coming from find_rule_appns_ag)
= ruleAppns: List of rule application tuples of agnostic dictionaries (Non-parametric: (transformation
matrix, match, result, shape after application), Parametric: (match, result, shape after application))
to retrieve the shape to be drawn from
= refPoint (optional): Tuple / list of integers or floats / vectors / points (3Ds)),
= hide: Boolean Value; True (default) hides the resulting Rhino geometries; False leaves them visible
in the Rhino Viewport
= |layerNameMain: name of layer to draw Rhino GUIDs of result on,
= shapelDs: List of shape GUIDs of original shape (if these are to be deleted and replaced)
Returns

= List of Rhino Geometry [shape GUIDs]: If successful

= None: If unsuccessful or inputs are incorrect

Warnings & Errors

= Warning: Choice input is an integer greater than number of available rule applications

= ValueError: No rule applications entered, OR target layer name is not present in layer names, OR
shapelds is not a list OR value of hide is not a Boolean value

= TypekError: choice input is not an integer OR ruleAppns is not a list OR data type of reference point
is not a tuple/list of three numbers/Rhino point

= KeyError:
O If the number of elements in the reference point tuple or list is greater than / less than 3

o If 'rhino_shapes_c'is not present in the sort register, i.e. sortal library has not yet been set up

Example

rule name = ‘test rule’

selected application index = 0

ruleAppns = sgi.find rule appns_ag(rule name, ‘mainShape’, subshape = None,

Rhino.Geometry.Point3d(0,0,0))

newGUIDs = sgi.draw result(selected application index = 0, ruleAppns, hide =
False, layerName = ‘TestLayer’)

79



This will generate the new GUIDs of a single rule application drawn in the Rhino workspace. Since ‘hide’ is set to
False, the result will be visible in the viewport, and stored on the layer called ‘TestLayer’.

draw_results

Draws all the resulting agnostic objects of the ruleAppns list in the Rhino workspace. Each result's drawing is
drawn on top of one another, with the location of the plotting based on the location of the original shape the
rule was applied onto.

When a reference point is given (tuple/list/vector/point), the shape GUIDs are moved to the reference point,
but are still drawn on top of one another. The default reference point is the origin. The Rhino GUIDs are, by
default, hidden as soon as they are drawn in the Rhino viewport.

Syntax

sgi.draw_results(rule Appns, refPoint = Rhino.Geometry.Point3d(0,0,0), hide =
True, layerNameMain = 'Default', shapelds = [], prnt = False)

Parameters

= ruleAppns: List of rule applications as agnostic objects in tuples resulting from use of
find_rule_appns_ag

= refPoint: Rhino GUID, tuple or Rhino point geometry where results will be plotted in reference to

= hide: Boolean value; True (default) - hide Rhino geometries from viewport, False - show Rhino
geometries in viewport

= layerNameMain: Text string; layer name of layer where resulting geometries are to be placed

= shapelDs: List of Rhino GUIDs to delete and to be replaced by Rhino GUIDs coming from
draw_results

= prnt: Boolean value; True - print description individuals belonging to resulting shape, False

(default) - description individuals not printed
Returns

= List of Rhino Geometry [GUIDs]: If successful; geometries are hidden from the viewport itself

= None, if function is unsuccessful or inputs are incorrect

Warnings & Errors

= ValueError: No rule applications entered OR target layer name is not present in layer names OR
shapelds is not a list OR value of hide is not a Boolean value

= TypeError: If ruleAppns is not a list OR data type of reference point is not a tuple/list of three

numbers/Rhino point
= KeyError:
o if the list of rule applications is empty

o If 'rhino_shapes_c' is not present in the sort register, i.e. sortal library has not yet been set up

80



Example

rule name = ‘test rule’

rule Appns = sgi.find rule appns_ag(rule name, ‘mainShape’, subshape = None,
Rhino.Geometry.Point3d(0,0,0))

new GUIDs

True)

= sgi.draw results(rule Appns, Rhino.Geometry.Point3d(0,0,0), hide =

This will generate all the ruleAppns in the Rhino workspace and draw them on top of one another, but they will

immediately

be hidden from the viewport as ‘hide’ is set to True. To show the GUIDs:

rs.ShowObjects (new GUIDS)

find_rule_appns_ag

Finds rule applications from a subshape and shape, or from a set of GUIDs. It returns a list of tuples of agnostic

dictionaries, corresponding to the LHS shape (the match within the main shape), the RHS shape (the result after
the match shape has been replaced with the RHS of the rule), and the entire shape after the rule has been

applied onto it. In cases where the rule is non-parametric, the transformation matrix is also returned; if the rule

is parametric, no transformation matrix is returned.

Syntax

sgi.find rule appns ag(chosenRule, shape, subshape = None, refPoint =
Rhino.Geometry.Point3d(0,0,0))

Parameters

Returns

chosenRule: Rule name as text string

shape: Name of main shape as text string as recorded in sortal library's form register OR agnostic
dictionary pertaining to shape OR Rhino GUIDs composing shape (predicates and directives will
not be considered)

subshape: Name of subshape as text string as recorded in sortal library's form register (optional)
OR agnostic dictionary pertaining to subshape OR Rhino GUIDs composing subshape (predicates
and directives will not be considered)

refPt: GUID of point, tuple, or Rhino Geometry point of reference point which will serve as the

'origin' with which shapes will be plotted in respect to (in principle, a vector; optional)

List of applications (in tuple form) as based on match generated by subshape or main shape, if no
subshape input is given

An empty list, if no rule applications are found
Each element of the list is a tuple in the following format:

a. Non-parametric:

(<transformation matrix>, <LHS match in agnostic form based on subshape>, <RHS result
in agnostic form>, <Main Shape after rule application in agnostic form>)

b. Parametric:

81



(<LHS match in agnostic form based on subshape>, <RHS result in agnostic form>, <Main

Shape after rule application in agnostic form>)

Warnings & Errors

= ValueError: If rule name is not present in the rule register or if the input for chosenRule is neither
arule object nor a rule name

= TypekError: If initial shape or subshape is not a list of GUIDs or a text string or an agnostic
dictionary or is empty

= KeyError: If initial shape or subshape input's name is not present in the form register or if
'rhino_shapes_c' is not present in the sort register, i.e. sortal library has not yet been set up

= Warning: If subshape is not part of shape -> exits function and returns False

Example

rule name = ‘test rule’

mainshape name = ‘new_ shape’

subshape name = ‘new shape sub’

refPoint = rs.GetObject (‘'Select reference point’)

rule appns = sgi.find rule appns_ag(rule name, mainshape name, subshape name,
refPoint)

Depending on if the rule corresponding to ‘rule_name’ is parametric or non-parametric, the rule_appns list will
contain either three or four items per element of the list, corresponding to each rule application.

An empty list is returned if no rule applications can be found.

create_shape_ag

Creates a sortal shape from a collection of Rhino GUIDs. It registers the shape according to the input for the
shapeName variable in the sortal library. The function returns the predicate/directive dictionaries.

Syntax

sgi.create shape ag(shapeName = None, shapeData = None, descriptions = '',
classification = None, refPoint = rg.Point3d(0,0,0), prnt = False)
Parameters

= shapeName: Name of shape (text string)

= shapeData: List of Rhino GUIDs or an agnostic dictionary that will compose the sortal shape; if an
agnostic dictionary is given as input, then any input to the descriptions string will be ignored.

= descriptions: Optional text string of descriptions to include in the sortal shape (if these are not yet
present in the agnostic dictionary), e.g.

'labell@ ("A2", 1, 1234); ("A3", 4, 1234) |label2@("A1l", 1, 1234) |
label2@ ("A9", 8, 1234)"

where there are two description types, 'labell’ (followed by an ampersand “@”; 2 individuals

“u,n

separated by a semicolon “;”), and 'label2' (2 individuals); declaration of different description

|"

types and their individuals is separated by a vertical dash “

82



= classification: Name of target disjunctive sort type (text string); this sort type must already be

present in the sort register under the compound sort 'rhino_shapes_c'
= refPoint: Reference point to serve as 'origin' point for shape; the default origin point is 0,0,0

= prnt: Boolean value (True/False); True - prints the resulting sortal shape according to the output of
the 'printE' command in the sortal library, False (default) - does not print anything

Returns

= A sortal shape using the disjunctive sort type specified in the ‘classification’ variable is created in
the form register and stored under the contents of ‘shapeName’.

= This function returns the predicates and directives dictionaries obtained from the Rhino geometry
input ‘shape_data’. They will have the following keys inside:

= predicates: Predicates dictionary
{'max': [], 'shortest': [], 'longest': [], 'bound': [], 'nolabel':[]}

= directives: Directives dictionary

{‘pointOL’:[], ‘distance’:[], ‘normal’:[]}

Warnings & Errors

= TypekError: If shapeName input is not a text string, or if shapeData input is not an agnostic
dictionary or a list of Rhino GUIDs, or if shapeData has any elements that are not Rhino GUIDs
inside

= Warning: If descriptions input is not a text string

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sortal library has not yet been

set up
Example
shape data = rs.GetObjects(‘Select shape’)
shape name = ‘test shape’
descriptions = 'labell@("A2"™, 1, 1234); ("A3", 4, 1234)|label2@("Al", 1, 1234) |

label2@("A9"™, 8, 1234)"
classification = ‘N3D’

This uses the non-parametric 3D disjunctive default sort type within rhino_shapes_c (called ‘N3D’) if
sgi.sortal_setup() was used to do sortal library setup or a similarly named sort exists in the sort register.

predicates, directives = sgi.create_ shape ag(shape name, shape data,
descriptions = '', classification)

convert_to_agnostic

Converts a list Rhino GUIDs to an agnostic dictionary based on the structure of the target sort named in the
‘classification’ variable (this sort type must have already been created and should be present in the register). If
descriptions are given, then it will include those descriptions into the agnostic dictionary. By default, the origin
is the reference point. However, the list of Rhino GUIDs may be processed with an optional reference point
other than the origin

83



Syntax

sgi.convert to agnostic(shapeRhino = [], classification = None, descriptions =
'', refPoint = Rhino.Geometry.Point3d(0,0,0))

Parameters

= shapeRhino: List of Rhino GUIDs
= classification: Target sort type for the shape

= descriptions: Optional text string of descriptions to include in the sortal shape (if these are not yet
present in the agnostic dictionary), e.g.

'labell@ ("A2", 1, 1234); ("A3", 4, 1234)|label2@("A1", 1, 1234) |
label2@("A9"™, 8, 1234)"

where there are two description types, 'labell’ (followed by an ampersand “@”; 2 individuals
separated by a semicolon “;”), and 'label2' (2 individuals); declaration of different description
types and their individuals is separated by a vertical dash “|”

= refPoint: Reference point which the coordinates of the shape will be subtracted from; this
functions as the 'origin' of the shape, and can be used for defining shapes that compose rule sides
so that they can be drawn side by side one another in the Rhino viewport

Returns

Four outputs, in the following order:

= Agnostic object form of [Rhino GUIDS + description type; classification is used as the key for the
dictionary if there is more than one type of disjunctive sort within 'rhino_shapes_c' that is not a
dummy disjunctive sort] as agnostic dictionary

= Dictionary of GUIDs corresponding to geometry stored in agnostic object, according to their target
sort type

= Dictionary of predicates

= Dictionary of directives

Warnings & Errors

= TypekError: If shapeRhino is not a list of Rhino GUIDs OR if ‘descriptions’ is not None or a text string
= Warning: If conversion was unsuccessful

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sortal library has not yet been

set up
Example
shape data = rs.GetObjects(‘Select shape’)
classification = ‘P3D’ # parametric 3D disjunctive sort
descriptions = 'labell@ ("A2", 1, 1234); ("A3", 4, 1234) |label2@("Al"™, 1, 1234) |

label2@("A9"™, 8, 1234)"

refPoint

Rhino.Geometry.Point3d(10,10,0)

shape agnostic, shape guids dict, predicates, directives =
sgi.convert to agnostic(shapeData, classification, descriptions, refPoint)

84



maximalize_ag

Maximalizes an agnostic dictionary or list of Rhino GUIDs. In the case of inputting a list of Rhino GUIDs, the

output is automatically a list of the maximalized Rhino GUIDs.

Syntax
sgi.maximalize ag (shape, target = None, rhino = False, hide = False, delete =
False)
Parameters
= shape: Shape data in the form of a list of Rhino GUIDs (target disjunctive sort for maximalized
must be provided) OR an agnostic dictionary OR the shape name as a text string
= target: Target disjunctive sort for shape to be maximalized (text string)
= rhino: Boolean value (True/False); True - returns list of Rhino GUIDs corresponding to maximalized
shape; False (default) - returns agnostic dictionary form
= hide: Boolean value (True/False); True - hides Rhino geometry output from viewport; False
(default) - leaves Rhino geometry output visible in viewport
= delete: Boolean value (True/False); if the inputs are a list of Rhino GUIDs, then True deletes the
inputs, and False (default) leaves the inputs still in the Rhino viewport
Returns

=  maxShape: Maximalized agnostic dictionary/list of Rhino geometries

Warnings & Errors

= TypekError: If type of input is invalid (i.e. not a list of Rhino GUIDs, an agnostic dictionary or a shape

name text string)
= ValueError: If input is an empty list or if shape name doest not exist in the form register

= KeyError: If ‘rhino_shapes_c’ is not present in the sort register, i.e. sortal library has not yet been
set up

Example

The function call below returns the maximalized agnostic dictionary version of ‘shape_agnostic’. If there is only
one active geometric disjunctive sort in ‘rhino_shapes_c’, then the variable target can be left as its default
value, as below:

shape agnostic, shape guids dict, predicates, directives =
sgi.convert to agnostic (shapeData, classification, descriptions, refPoint)

sgi.maximalize ag (shape agnostic)

This function call draws the maximalized shape corresponding to the data inside ‘shape_agnostic’ in the Rhino
viewport, and hides them afterwards; it returns the list of GUIDs corresponding to this maximalized shape.

sgi.maximalize ag (shape agnostic, rhino = True, hide = True)

This function call draws the maximalized shape corresponding after convert the data inside ‘shape_rhino’ to
sortal data, and leaves the new drawing visible in the viewport; it returns the list of GUIDs corresponding to this
maximalized shape, and deletes the Rhino GUIDs of the input list ‘shape_rhino’

shape rhino = rs.GetObjects (‘'Select shape data’)

85



sgi.maximalize ag(shape rhino, hide = False, delete = True)

sortal_setup

Sets up the sort types in the sortal library, as well as any external description sort types, according to the list of
string inputs in the variable 'descriptions'. The code in this function also serves as an example on how to create
sorts through hardcode, from primitive to compound sort types and to imbue geometric primitive sorts with
attributes.

It may be run without any inputs; this sets up a default compound sort with two disjunctive sorts inside, one of
which is a dummy disjunctive sort composed of two dummy description sorts. This dummy disjunctive sort is
removed from the compound sort 'rhino_shapes_c' once other sort types are introduced, when using 'read_sdl'
to import SDL file data.

All geometries (points, line segments, plane segments, circles, ellipses, circular arcs, Bezier curves) are enabled
in this default disjunctive sort as non-parametric geometries, if no input is given. Due to the limitations of the
library, parametric 2D and 3D circular and elliptical arcs are not available.

Labels, weights, descriptions (one type called 'desc'), weight255 (for grayscale), enumeratives and colors are
enabled as attributes to all the non-parametric geometries. As for external descriptions, they may be added to
the default setup by inputting a list of text strings corresponding to the names of the intended description sort

types.

The names of the default sort types in any resulting agnostic dictionary that follows from using sgi.sortal_setup
are as follows:

= Default: “N3D”
= Compound sort: rhino_shapes_c
= Disjunctive sort: rhino_shapes
= Attribute sorts under disjunctive sort:
©  Points - 'points'
O Line segments - 'line_segments'
O Plane Segments - 'plane_segments'
©  Circles - ‘circles’
©  Ellipse - 'ellipses’
o Circular arcs - 'arcs'

O  Bezier Curves - 'bezier_curves'

O Attributes enabled for all sorts: label, description, color, weight, weight255, enumerative

Syntax

sgi.sortal setup(descriptions = [], parametric = False, dimension = True)

Parameters

= descriptions: List; list of description sort type names

86



= parametric: Boolean; indicates if sort types are to be non-parametric or parametric; default is

False (non-parametric)

= dimension: Boolean; indicates if sort types are to be 2D or 3D; default is False (3D)

Returns
] True: If successful
. False: If unsuccessful

A sort based on the conditions given to ‘sortal_setup’ is created in the back end and stored under the
compound sort ‘rhino_shapes_c’. If the geometric disjunctive sort is the only one active, it is stored with a
dummy disjunctive sort composed of two dummy description sorts in the compound sort. The following names
are given to the disjunctive sorts based on the given parametric-dimension combinations:

O N3D —non-parametric, 3D
O N2D —non- parametric, 2D
©  P3D - parametric, 3D

O P2D - parametric, 2D

Warning/Errors:

= None

Example

When creating a parametric 3D sort with no external descriptions

sgi.sortal setup([], True)

OR when enabling external description types

sgi.sortal setup([‘description 1’, ‘description 2'])

This will include two description sort types, one named ‘description_1" and the other named ‘description_2’ in
the resulting disjunctive sort called ‘N3D’".

87



	About the SortalGI API
	SortalGI Installation and Setup for Rhinoceros
	1. Installing the SortalGI library
	2. Linking the SortalGI library to Rhinoceros
	3. Setting up the SortalGI library in Rhinoceros
	4. Importing future for Python 3.5 to Python 2.7 compatibility
	API
	Import notation
	Summary of all methods
	apply_all_together
	apply_flow
	check_precision
	convert_shape
	convert_sort
	create_flow
	create_rule
	create_shape
	default_precision
	draw_rule
	draw_shape
	extract_shape
	find_rule_appns
	get_rule_lhs
	get_rule_rhs
	get_rule_description
	maximalize
	move
	overwrite_sdl
	part_of
	read_sdl
	redraw
	save_sdl
	set_flow_description
	set_flow_name
	set_precision
	set_rule_description
	set_rule_name
	set_shape_name
	Rhino Methods
	Import notation
	Summary of all methods
	add_bound_line
	add_color
	add_description
	add_distance
	add_embeds
	add_enum
	add_label
	add_longest_line
	add_max_line
	add_no_label
	add_normal
	add_point_on_line
	add_shortest_line
	add_void
	add_weight
	analysis
	clear_shape
	delete_description
	delete_label
	delete_pred_dir
	delete_tag
	clear_everything
	tag
	FAQ
	Annex A: About Sortal Structures
	Sortal structures and behavioral categories
	Data types and characteristic individuals
	Annex B: About Shape Rules and Description Rules
	Shape rules
	Descriptions and description rules
	Parametric descriptions
	Description literals
	Description tuples
	Description parameters
	Parameter conditionals
	Numerical expressions
	String expressions
	Tuple expressions
	Functions
	References
	Shape element types and their available properties
	A formal notation for descriptions
	Description functions
	Numerical functions
	String functions Tuple functions
	Annex C: Description of Sortal Imports
	Annex D: Legacy Methods
	Summary of all methods
	draw_result
	draw_results
	find_rule_appns_ag
	create_shape_ag
	convert_to_agnostic
	maximalize_ag
	sortal_setup

